
Catching up to Unicode∗

Roozbeh Pournader
Computing Center
Sharif University of Technology
Azadi Avenue
Tehran, Iran
roozbeh@sharif.edu

http://sina.sharif.edu/~roozbeh/

Abstract

Unicode, the universal character set standard first published in 1991, has changed
dramatically in its more than ten years of development, trying to achieve max-
imum interoperability of internationalized text between different platforms. In
the meanwhile, TEX, and its companion production tools, have stuck loyally to
their roots of special formats and traditions known only to the TEX community,
rather ignoring this moving target.

This paper will try to draw a general outline of the Unicode standard in its
present situation, emphasizing on its recently introduced features. It will also
try to specify new requirements for Omega, in order to make it usable in the
developing realm of standard renderings.

Introduction

The Unicode Standard (The Unicode Consortium,
2000, as amended by Unicode Editorial Commit-
tee, 2001, and Unicode Editorial Committee, 2002),
and the big family gathered around it, ranging from
MathML (Carlisle et al., 2001) to OpenType (Adobe
Systems Incorporated and Microsoft Corporation,
2001), have been successful in making document in-
terchange truly global. Now, you don’t need to
worry about the very basics of how to encode your
text if you want to develop an application handling
Lao, or send an email containing APL symbols; you
won’t need to educate the user base about seman-
tic markup, as even Microsoft is now recommending
XML; and you don’t even need to develop new tools
for your basic Syriac text processing needs, IBM has
already developed many general purpose ones if you
can’t find some suitable ones in your Linux machine,
which you only need to configure.

The Unicode standard, while keeping the same
encoding model of the beginning days, has become
very complicated recently, because of the advanced
requirements of text processing applications and the
natural languages and scripts themselves. Also, be-
cause of the wide deployment of Unicode by Mi-
crosoft, a Unicode contributor, starting with Win-

∗ Preparation of this paper, its prerequisite research,
and its presentation at TUG 2002 have been supported
by the FarsiWeb Project, Science and Arts Foundation
(http://www.farsiweb.info/).

dows 2000 and Office 2000 series of products, many
loopholes and implementation difficulties have been
discovered, and fixed in the standard.

Unfortunately, Microsoft has got some of the
ideas wrong, but fortunately, many of us don’t live
in a Microsoft world. Linux and GNU communities,
with their affinity for standards, and now backed by
corporations like IBM and Sun, have helped imple-
ment Unicode in a compliant way. With an out of
the box installation of Red Hat Linux 7.3, you can
now edit a Unicode text document in Ethiopic con-
taining some Hebrew, some Braille, and a few chess
symbols using vim under xterm2. But sadly, very
few tools exist to help you make a typographically
beautiful printout of the file.

The current Unicode

Putting history aside, Unicode, in its latest 3.2 ver-
sion, is a character set assigning a number from 0
to 10FFFF16 = 17 × 216 − 1 = 1, 114, 111 to each
character3. (We will be using the notation U+20A8

to refer to the character coded as 20A816, which (as
it happens) is a Rupee Sign). The characters are
distributed in blocks of related functionality, such as

2 The same is of course possible under Microsoft Win-
dows XP if you have the appropriate fonts and keyboard
mapping programs.

3 At present, the standard intends never to change this
upper limit, barring extraterrestial scripts!

80 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting



Catching up to Unicode

a script like Cyrillic or a common usage like Math-
ematical Operators.

Unicode does (and will) not encode any pre-
sentation forms (also known as glyphs) unless for
backward compatibility with legacy character sets.
So, you will not see four different characters for the
Syriac letter Beth, but only one.

On the other hand, there are many kinds of spe-
cial characters encoded, from control characters for
specifying the shape of newly-invented CJK ideo-
graphs to weather forecast symbols. There are also
more than 70,000 characters reserved for private use,
which lets two parties interchange text without re-
quiring the encoding of their limited-use characters
by the standard.

Unicode also assigns many normative and infor-
mative properties to each character, together with
descriptions of characters and blocks. For exam-
ple, the Arabic block contains a very exact descrip-
tion of a minimum Arabic contextual shaping algo-
rithm, and the General Punctuations block contains
explanatory text for each punctuation mark to make
sure that not a single character is misunderstood. A
list of some character properties together with their
description can be found in Table 1.

The Unicode Consortium is quite proactive, as
well as responsive to requests, in encoding new char-
acters and redefining character properties. Its Uni-
code Technical Committee meets quarterly, and tries
its best in both keeping stability and backward com-
patibility, and fixing any existing mistakes. The au-
thor has had a pleasing experience with his propos-
als to the committee.

Character Properties Some normative proper-
ties worth special note are canonical decompositions,
compatibility decompositions, and combining classes.
For instance, Unicode has two ways to encode ‘ä’,
one being the character U+00E4, Unicode Small
Letter A With Diaeresis, and the other the se-
quence of characters 〈U+0061, U+0308〉, which is ac-
tually a Latin Small Letter A, followed by a
Combining Diaeresis. To help applications, Uni-
code specifies a mechanism for decomposing the for-
mer character to the latter sequence, to check equiv-
alence. The situation will get more complicated
when you consider the case of double or multiple
accents: a Combining Cedilla can be equally fol-
lowed or preceded by a Combining Tilde, but you
can’t say that about a Combining Tilde and a
Combining Acute Accent, where an interchange
will result in different renderings. So, there will be
a need for combining classes, which are numbers as-
signed to each combining character (equal numbers

specify non-interchangeable order). The other prop-
erties, compatibility decompositions, are decompo-
sitions specifying approximate equivalence, like the
character U+210E, Planck Constant (h) which
is specified to be compatibly equivalent to U+0068,
Latin Small Letter H, with only a font differ-
ence.

Based on these two ideas, come Unicode nor-
malization forms (see Davis and Dürst, 2002). The
normalization forms are there to help one do binary
checking instead of heavy table lookups. Once the
text is in a normalization form such as NFD, in which
all precomposed characters are decomposed based
on their canonical decompositions, and combining
characters sorted based on their combining classes4,
equivalent strings will become equal and it will be
good old days again, where you could check string
equivalence using the C function strcmp or search
your files with the UNIX tool grep.

In practice, it is Normalization Form C (NFC),
a form that re-composes the characters after decom-
position, which is the most important form. Having
maximum compatibility with legacy character sets,
and requiring a simpler rendering logic which eases
implementation in portable devices, NFC is refer-
enced frequently in the Character Model for World
Wide Web (Dürst et al., 2002) as the normaliza-
tion form required for all web content. It is also
the preferred way for encoding text files and file
names in UNIX (except in Mac OS X, where NFD

is used). Another form, NFKC, which additionally
uses compatibility decompositions, is a requirement
of IETF’s International Domain Names in Applica-
tions (Fältström et al., 2002).

Another important character property, which is
absolutely required in the area the author lives, is
the bidirectional category. These are categories as-
signed to each character specifying its behavior in
mixed right-to-left and left-to-right text, which is
common in scripts like Arabic and Hebrew. Char-
acters are divided to classes like left-to-right, right-
to-left, European number, Arabic number, common
separator, white space, . . . which are used in a care-
fully specified Bidirectional Algorithm (Davis, 2002)
to reorder a logically-ordered stream of characters to
a visually-ordered one.

There are also many other character properties,
but worth special notice is that breaking almost any
of them will make your application non-compliant.
You cannot have your Arabic Comma behave as
a strictly right-to-left character, render two canon-
ically equivalent strings in two different ways, or

4 The compatibility decompositions will be ignored.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 81



Roozbeh Pournader

Code Point The numeric code assigned to the character: ‘2057’ for the
Quadruple Prime. This can never be changed.

Character Name A name only using uppercase Latin letters, digits, hyphen and
space. This can never be changed.

General Category A category describing the general behavior of the character:
‘Sc’ (Symbol, Currency) for the Euro Sign.

Canonical
Combining
Classes

A class used for ordering combining marks and accents after
a base letter: ‘230’ (Above) for Combining Tilde and
Combining Grave Accent and ‘202’ (Below Attached) for
Combining Cedilla.

Bidirectional
Category

Categories specifying the behavior of the character in a
bidirectional context: ‘AL’ (Right-to-Left Arabic) for Arabic
Letter Beh.

Character
Decomposition
Mapping

A decomposition of the character to a sequence of others:
‘0075 0302’ (〈Latin Small Letter U, Combining
Circumflex Accent〉) for Latin Small Letter U
With Circumflex, and ‘〈super〉 0054 004D’ for Trade
Mark Sign (TM). There are many stability requirements for
the character decompositions (Davis and Dürst, 2002).

Decimal Digit Value A numeric value for digits: ‘3’ for Arabic-Indic Digit
Three.

Numeric Value A numeric value for characters that specify numbers: ‘1/5’ for
Vulgar Fraction One Fifth.

Mirrored Specifies if the character image should be mirrored in text laid
out from right to left: ‘Y’ (Yes) for Element Of.

Uppercase Mapping
A one-to-one mapping for converting letters to uppercase:
‘053F’ (Armenian Capital Letter Ken) for Armenian
Small Letter Ken (for full case mappings, see Davis, 2001).

Lowercase Mapping
Similar to uppercase mapping, providing lowercase forms:
‘1043E’ (Deseret Small Letter Jee) for Deseret Capital
Letter Jee.

Titlecase Mapping
Similar to uppercase mapping, providing titlecase forms: ‘01C8’
(Latin Capital Letter L With Small Letter J for Latin
Small Letter Lj).

Arabic Joining Type Specifies the shaping behavior of an Arabic or Syriac letter: ‘D’
(dual-joining) for Arabic Letter Sheen.

Arabic Joining
Group

Specifies a group for each Arabic and Syriac letter, specifying
the letter it will be shaped like: ‘SEEN’ for Arabic Letter
Sheen.

Line Breaking
Property

Specifies how the character behaves relative to line breaking:
‘BA’ (Break Opportunity After) for En Dash (see Freytag,
2002 for more details).

Special Casing
Properties

Uppercase, lowercase, and titlecase mapping for languages that
handle the case differently: ‘0130’ (Latin Capital Letter
I With Dot Above) for Latin Small Letter I in Turkish
and Azeri contexts.

Table 1: Some of the various standard properties of Unicode characters.

82 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting



Catching up to Unicode

use some unassigned code points for document in-
terchange, and claim compliance at the same time.
The user undoubtedly doesn’t like her text to have
different meanings in different applications.

Interesting Features These features are some of
the interesting ones for typographically and seman-
tically oriented mind sets. Some appear only in later
versions of the standard.

• Having different characters for letters that look
the same in uppercase but have different lower-
case forms. Also, providing different characters
for mathematically different forms of letters like
the Greek small Phi.

• The ability to recommend for or against auto-
matic ligation in special circumstances, using
the characters Zero Width Joiner and Zero
Width Non-Joiner.

• Specifying line breaking properties for charac-
ters, to help recommending for or against a line
break.

• Specifying a mirroring behavior for some char-
acters like the opening parenthesis, whose im-
age should be mirrored in a right-to-left con-
text.

• The ability to encode implicit mathematical se-
mantics, like an invisible times operator or an
invisible comma separator, and even a smart
Division Slash for in-line fractions like 22/7.

• Having characters for almost every symbol re-
quired in mathematics typesetting from four
combining characters for different forms of \not
to a character for rare symbols like Mathemat-
ical Sans-Serif Bold Small Xi, and even
bracket, brace, and parenthesis fragments, like
those available in TEX’s cmex font.

OpenType

Because Unicode does not provide standard codes
for glyphs, but rather is interested only in charac-
ters, there is a need for a standard to fill the gap,
that is, provide a mechanism to map characters to
glyphs in a font. There are three available: Mi-
crosoft and Adobe OpenType, Apple AAT, and SIL

Graphite (Correll, 2000). Of these, OpenType, a
superset of TrueType, has become much more suc-
cessful, with many outside implementations includ-
ing some from IBM and the FreeType and GNOME

projects. It is becoming the de facto standard not
because the specification is very clear or technically
supreme, but since many high quality fonts exist in

the format5. Actually, when you get to scripts a lit-
tle more complex than European ones, say Devana-
gari or Khmer, OpenType is the only font format
in which you will be able to find a couple of usable
fonts.

Unlike the AAT and Graphite formats men-
tioned above, OpenType fonts do not encode the
basic visual behavior of the characters in the scripts
they support. It’s the text layout engine that should
know about the script, and the font will only provide
the minimum needed information for locating vari-
ous presentation forms, kerning, positioning accents
and marks, and ligating (among others). For exam-
ple, a font will not include any information about
the contextual shaping behavior of U+0649, Arabic
Letter Alef Maksura, like if it is a right-joining
letter or a dual-joining one6. It will only specify that
a final presentation form of the letter can be found
at a certain glyph position.

OpenType introduces new font tables once in
a while (even allowing font developers to register
some with the specification owners), specifying fea-
tures like Hebrew mark positioning or Arabic swash
forms. This means that the font format is both back-
ward compatible (old engines won’t know about ad-
vanced features, but can still render the text using
the older features available in the font), and exten-
sible (an overlooked feature in a minority script can
be requested by anyone and included in the next ver-
sion of the specification, and everyone will be free to
implement or ignore it).

Other Friends

Unicode and OpenType are joined by standards like
Adobe PDF (Adobe Systems Incorporated, 2001)
which in the latest version provides some mecha-
nisms for having a glyph stream and a Unicode char-
acter stream specify a document’s visual layout and
semantic content in collaboration, W3C Cascading
Style Sheets (Bos et al., 1998; Suignard and Lil-
ley, 2001) that includes mechanisms to guide auto-
matic selection of fonts for Unicode characters from
various scripts that appear in a single text docu-
ment, and MathML, with almost all of its symbols
now in Unicode, which will happily let you cut and
paste mathematical formulas between different ap-
plications.

5 For example, Adobe recently re-released all of their pro-
fessional fonts in the OpenType format, abandoning both
PostScript Type 1 and Multiple Master for new fonts.

6 Actually, the joining class of this letter was changed
between Unicode versions 3.0 and 3.0.1.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 83



Roozbeh Pournader

Many other standards have also emerged, both
using Unicode’s power in supporting technical sym-
bols and minority scripts, and learning from its suc-
cessful unifying experience. Fortunately, these stan-
dards are not only on paper, but they are followed
and being implemented carefully by both major soft-
ware houses and Open Source and Free Software
communities. The author is specially interested in
the linux-utf8 mailing list, where discussions about
implementing Unicode-related technologies in GNU,
Linux and UNIX platforms happen (subscription in-
formation is available at http://www.cl.cam.ac.
uk/~mgk25/unicode.html#lists).

Where We Stand

In this picture, TEX and friends are left far be-
hind the majority of the world. We still mostly use
our own font formats, METAFONT, PostScript Type
1, TFM, and PK instead of OpenType (for outline
fonts) or pcf and bdf (for bitmap fonts)7; the TEX
output format DVI is still in very wide use, whereas
the rest of the world primarily uses PDF; and almost
all TEX friends have their own traditional command
sequences with a very loose syntax, in contrast with
a world community united on XML. In short, they
just don’t fit!

This should not be compared to the beginning
years, when the TEX community needed to invent
formats for technologies that were becoming pub-
lic for the first time, and had the chance of mak-
ing them de facto standards. Many components
can (and should) now be replaced with their widely
recognized and recommended equivalents like XSL

Formatting Objects (Adler et al., 2001), to have the
luxury of high quality typography once again. Con-
trary to many who insist that they are dead horses
not worth more beatings, the author believes that
TEX and friends have the ability of reaching many
new users if they get modified to support current
technologies.

New Requirements for Omega

The author considers Omega as a possible candi-
date to advance in the field and fill the existing
gap. Actually, it is the only candidate among friends
like ε-TEX and pdfTEX, which are more typograph-
ically oriented. Omega has already passed the has-
sle of implementing sixteen-bit fonts, pre- and post-
processing text filters needed for rendering the so-
called complex scripts, and even some MathML. But

7 Even tools like ttf2pk, which let TEX use TrueType fonts,
are not in active development and are based on a frozen
branch of the FreeType font engine

unfortunately it’s not stable, lacks an active devel-
opment team, and has a rather more academic orien-
tation than desirable for such a project. The worst
point of all is that it is being developed in a cathe-
dral model (see Raymond, 2001), which makes it
very hard to reach the above goals.

To make Omega usable in the current work-
ing environment, the following requirements come
to mind:

• Opening the development of Omega, not only
accepting contributions from the public, but
also making them active in the development
process. This will need a few central people at
the beginning, with enough time at their hand
to sketch and implement a working mechanism
for future development.

• Accepting the international standards as they
are, and trying to be compliant as much as
possible: any problem in standards like Uni-
code should be taken to the Unicode authors
themselves, instead of trying to fix them lo-
cally8. This will help reach consistency with
many other existing tools, or those who may be
developed in the future.

• Implementing PDF output (not necessarily a
merge with pdfTEX), including Unicode char-
acter streams.

• Implementing native OpenType support. Some
first milestone for achieving the goal may be
providing a tool to convert OpenType tables to
ΩTP processes. Also, the current Omega fonts
should be converted to the OpenType format9.
Apart from making Omega able to use almost
all of the fonts in the wild, this will be a contri-
bution to the Open Source community who lack
good printing engines for texts in non-European
scripts.

• Supporting XML and MathML as both input
and output formats. Fortunately, some of this
has already been implemented.

• Closely tracking new features of Unicode, so
as to stay current with the rest of the world.
Omega may even be able to act faster than its
competitors in this field, especially if it starts
to follow the bazaar model of development.

8 The author believes that incorporating a fix which will
definitely happen in a yet unpublished version of a standard
should be allowed.

9 Some ‘Free UCS Outline Fonts’, UCS standing for Uni-
versal Character Set which is the alternate name of Unicode,
are under development based on existing free outlines includ-
ing those from Omega. Latest information is available at
http://savannah.gnu.org/projects/freefont.

84 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting



Catching up to Unicode

Acknowledgments

The author wishes to thank Markus Kuhn and Se-
bastian Rahtz for initially raising some of the is-
sues discussed in this paper, Martin Dürst, Mark
Davis, and many other internationalization evange-
lists who have helped him understand the devel-
opment mechanisms of many internationalization-
related standards, and participate in their develop-
ment, and also Karl Berry, for editorial assistance.
Final thanks should be given to John Plaice and
Yannis Haralambous who created Omega in the first
place.

References

Adler, Sharon, A. Berglund, J. Caruso, S. Deach,
T. Graham, P. Grosso, E. Gutentag,
A. Milowski, S. Parnell, J. Richman, and
S. Zilles. “Extensible Stylesheet Language
(XSL), Version 1.0”. W3C Recommendation,
World Wide Web Consortium, 2001. Available
from http://www.w3.org/TR/xsl/.

Adobe Systems Incorporated. PDF Reference,
Adobe Portable Document Format Ver-
sion 1.4. Addison-Wesley, third edition,
2001. Also available in electronic format from
http://partners.adobe.com/asn/developer/
acrosdk/docs/filefmtspecs/PDFRe%ference.
pdf.

Adobe Systems Incorporated and Microsoft Corpo-
ration. “OpenType Specification Version 1.3”.
2001. Available from http://partners.adobe.
com/asn/developer/opentype/main.html
and http://www.microsoft.com/typography/
otspec/default.htm.

Bos, Bert, H. W. Lie, C. Lilley, and I. Jacobs. “Cas-
cading Style Sheets, level 2”. W3C Recommenda-
tion, World Wide Web Consortium, 1998. Avail-
able from http://www.w3.org/TR/REC-CSS2.

Carlisle, David, P. Ion, R. Miner, and N. Poppelier.
“Mathematical Markup Language (MathML)
Version 2.0”. W3C Recommendation, World
Wide Web Consortium, 2001. Available from
http://www.w3.org/TR/MathML2.

Correll, Sharon. “Graphite: An Extensible Ren-
dering Engine for Complex Writing Sys-
tems”. Technical report, SIL International,
2000. Available from http://graphite.sil.
org/pdf/IUC17_paper.pdf.

Davis, Mark. “Case Mappings”. Unicode Stan-
dard Annex #21, The Unicode Consortium,
2001. Available from http://www.unicode.
org/unicode/reports/tr21.

Davis, Mark. “The Bidirectional Algorithm”. Uni-
code Standard Annex #9, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr9/.

Davis, Mark and M. Dürst. “Unicode Normalization
Forms”. Unicode Standard Annex #15, The Uni-
code Consortium, 2002. Available from http:
//www.unicode.org/unicode/reports/tr15/.

Dürst, Martin J., F. Yergeau, R. Ishida, M. Wolf,
A. Freytag, and T. Texin. “Character Model for
the World Wide Web 1.0”. W3C Working Draft,
World Wide Web Consortium, 2002. Available
from http://www.w3.org/TR/charmod.

Fältström, Patrick, P. Hoffman, and A. M. Costello.
“Internationalizing Domain Names in Appli-
cations (IDNA)”. Internet Draft, Internet
Engineering Task Force, 2002. Available from
http://www.ietf.org/internet-drafts/
draft-ietf-idn-idna-10.txt.

Freytag, Asmus. “Line Breaking Properties”. Uni-
code Standard Annex #14, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr14.

Raymond, Eric S. The Cathedral and the Bazaar,
Musings on Linux and Open Source by an Ac-
cidental Revolutionary. O’Reilly, revised edi-
tion, 2001. Also available in electronic for-
mat at http://tuxedo.org/~esr/writings/
cathedral-bazaar/.

Suignard, Michel and C. Lilley. “CSS3 module:
Fonts”. W3C Working Draft, World Wide Web
Consortium, 2001. Available from http://www.
w3.org/TR/css3-fonts.

The Unicode Consortium. The Unicode Stan-
dard, Version 3.0. Addison-Wesley, 2000.
Also available in electronic format from
http://partners.adobe.com/asn/developer/
acrosdk/docs/filefmtspecs/PDFReference.
pdf.

Unicode Editorial Committee. “Unicode 3.1”. Uni-
code Standard Annex #27, The Unicode Con-
sortium, 2001. Available from http://www.
unicode.org/unicode/reports/tr27/.

Unicode Editorial Committee. “Unicode 3.2”. Uni-
code Standard Annex #28, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr28/.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 85


