L 1 J

j o0 00

Otghedste gt el

¥ “H“\I

VYA s Sabods s

s R S T

T —

T
¥

=R e 3

g e e g -

e

1

p S
S T

L

S —

Farsi e
Computing
Review

April 1993

Editor: Amin Mohadjer

-t

s ‘S—A:F‘»\e‘»«.» =
Y S, S
e

R

P el

e |

Publishéd by: Informatics Society of Iran &
BRAIN Computer Systems Group

Farsi Computing Review

Editor: Amin Mohadjer

Farsi Computing Review (FCR) is a quarterly journal published in English by
Informatics Society of Iran in co-operation with BRAIN Computer Systems

Group.

Copyright ©1993 by Informatics Society of Iran & BRAIN Computer Systems
Group, P.O. Box 14455-161, Tehran, Iran. All rights reserved. Reproduction
or translation of any part of this work without the permission of the copyright
owners is unlawful.

Subscription enquiries inside Iran and Middle East should be directly addressed
to: Amin Mohadjer, P.O. Box 14455-161, Tehran, Iran. Tel/Fax: +98 21 980-
102.

Distributor of Farsi Computing Review outside of Iran (except Middle East)
is EleTek Systems. For further information, contact: c/o Dr. Nasser Modiri,
1107 Second Ave., Suite 613, Redwood City, Ca 94063, USA. Tel/Fax: (415)
369-8967. e-mail: nasser@unet.net.com

Anyone interested in acting as editor for a special issue of Farsi Computing
Review devoted to a particular topic is invited to contact the editor. Technical
papers appearing in this issue and opinions expressed in contributions are to be
construed as those of the individual author rather than the position of FCR.

Advertising Sales: Inquiries concerning advertising should be forwarded to Ad-
vertising Sales, BRAIN Computer Systems Group, P.O. Box 14455-161, (21)
980-102.

This issue is partly prepared using Ventura Publisher and printed on a HP
Laser III printer. The full contents of Farsi Computing Review is also available
in electronic format.

Editorial and all other correspondence and enquiries should be addressed to
Amin Mohadjer, Editor, P.O. Box 14455-161, Tehran, Iran.

Farsi Computing Review

A Quarterly Journal on Farsi Computing
Volume 1 * Number 1 * April 1993

Editor: Amin Mohadjer

In this issue:

Editorial by A. Mohadjerooouuviuuneunneninninnnnnnnn, 1ii
Articles
S. Kazemi & M. Mohsen Zadeh
A Persian Codeset for Information Interchange 1
A. Mohadjer
Farsi Computing: An OVerviewceueeeeeeensnnnnnnnn.. 16

A. Al-Salamah
Farsi GUIs

... 26
B. Torabi
An Approach to UNIX Farsi Systemoeeeerernennennnnnn... 32
M. Ziaei
Farsi Character Set: The Problem of Multiple Standards 39
Other Sections
Catalog of Publications on Farsi & Arabic Computing
English Publicationscoovuviiiiiunnunnnnennnnnnnn, 44,
Farsi Publicationsoovuiiiiiiinninnnniinnnnni, 47

Farsi Character Setscivvviienninnnnnnnnn... [Appendix A]
................................ [Appendix B]

Published by Informatics Society of Iran in Co-operation with
BRAIN Computer Systems Group
P.O. Box 14455-161, Tehran

Editorial

The idea of coming out with a journal on the subject of Farsi Computing was
shaped in 1991. At then, we published BRAIN newsletter and were determined
to establish some special interest groups with newsletters of their own to fo-
cus on more specific and detailed topics. The topic of Farsi Computing was
the most sounding for two reasons; it was an original idea which could also at-
tract the attention of researchers in Arabic countries, and also many problems
were around in adopting computer systems to our native language ‘Farsi’. Un-
fortunately, soon we found out that publishing magazines and running special
interest groups in Iran is not as easy as we thought.

BRAIN newsletter was ceased to publish after four issues and our ideas were
turned to dust. However, we found an alternative. We could continue working
under the cover of another magazine and the best possible choice was Computer
Report, the magazine of Informatics Society of Iran.

The first edition of Farsi Computing Review which you havein hand features five
original papers. In their paper ” A Persian Codeset for Information Interchange”,
Saeid Kazemi and Mammad M. Zadeh propose a standard for Farsi code set.
The other paper, ” Farsi GUIs” written by Dr. Abdulah Al-Salamah from King
Saud University was supposed to be printed in next issue but with a little bit
of luck we could manage its inclusion in this issue. Behzad Torabi of Iran
System wrote us ” An Approach to UNIX Farsi System” and finally me and my
colleague, Mahmood R. Ziaei wrote ” Farsi Computing” and ”Farsi Character
Set: The Problem of Multiple Standards”, respectively.

Not all available Farsi character sets and keyboard layouts are included in ap-
pendices to this edition. That’s also true when said about catalog of Farsi and
English publications on Farsi Computing. However, I hope that in next editions
those which have left out will got their place.

I would like to thank several people who provided me with enthusiasm, en-
couragement, and suggestions that helped to shape Farsi Computing Review. I
am especially indebted to Saeed Vahid, Mehdi Alipour, Nasser Modiri, Anoosh
Hosseini, and people in ISI for their support.

T welcome your comments and opinions regarding materials printed in this edi-
tion and am looking forward to having your contribution in this journal.

Amin Mohadjer
Editor
February 27, 1993

A Persian Codeset for Information Interchange*

Mammad M. Zadeh MUQ....N T
Saied Kazemi bl sau

Parsis, Inc.! e)by 5,3

August 5, 1992

Abstract

A stan i i

bt ia;)rlclit g\:;gtcgsse;fgdmg method is essential for the effective exchange of information
g b el e dpenpherals. The most widespread encoding for English characters
e T oIt fmerican St ar Coge for Ir}fOrmation Interchange (ASCII). Additional standards
ot e el \fre]] y various international committees to support other languages. But to
0 il izcs?;lted bstandard character encoding method for Persian. Alth'ough in
sefeed il ags o as been made,‘ no true standard has emerged. Traditionally, Persian
alieiip i A ext}ii\S{on to existing Arabic codesets, but this approach has several
drawbacks, Inth p 1? we wi discuss the strengths and shortcomings of some existing codesets

ing the requirements for Persian information interchange. In conclusio%\ weezfill

p!OpOSeaCOdeSet for Persian information interchange, and an encodin scheme for Persian fon
ge, enco g scheme e ts

COP Ight ©1992 by Parsis, Inc. Permission to use, co and distrib S paper te V]
* e o .
yr y , COpY, istribute thi: paperis hereby gran d, pro ided that this

tParsis, I i i
is, Inc., 1736 Franklin St., Suite B, Santa Monica, CA 90404, USA. Tel:(310) 917-2650 Fax:(310) 917-2653

1 Introduction

For decades now, the 7-bit American Standard Code for Information Interchange (ASCII) has been
cter encoding method for communication between computer hardware and

dard chara L.
s, sl ASCII is an American standard for English; it does not meet the

software. As its name suggests,

requirements of other languages. . ' '
qIn this paper we will explore limitations of existing Persian codesets, outline the requirements

of a complete Persian character encoding scheme, and propose a Farsi Standard Code for Information
Interchange (called FSCII) as well as a Earsi Standard Font Encoding (called FSFE).

1.1 Requirements

The criteria used in specifying our requirements were based on the ability to enter, store, process,
i i rm
display, and print any Persian document, no matter how complicated it may be. We use the te
’

in 1t bl()adest sense: we mean SuCh tlllIl S as IleVVSpapel ar tldes SClelltth
S g 7

“Persian document 'SP
educational text books, government documents, poetry and classic literature. Thus,

i rsian text. The requirements

plete Persian codeset should be capable of encoding any published Pe

were:

1. Ability to include all Persian characters.

2. Ability to coexist with the ASCII codeset in a document and be “properly” displayed without

requiring any structure on the document in the form of embedded commands.

3. Ability to include all Arabic characters for representing syntactically correct Arabic text.

4. Ability to efficiently handle special Persian requirements such as non-spacing marks (o),
punctuation marks, numeric characters, mathematical symbols, and compound words.

It should be emphasized that, if these requirements were met, it would be possible to take

advantage of many existing text-based applications in Persian.

1.2 Extensions to ASCII Codeset

The first 7-bit International Standards Organization (ES0) codeset supported certain Western Elllr()-
pean languages (e.g., French) by replacing several characters ir: the ASC¥I codeset.. The prol:;m
with this scheme was thatonly a subset of all necessary characters dould be 1r.1c'luded in the encoding
space of 7 bits (128 characters). Moreover, since the 7-bit ISO stanflard x.nodlﬁed the ASCI:dcodeset,
systems that employed the ASCII codeset were not compatible with this new ISO standard.

To overcome the shortcomings of a 7-bit encoding scheme, ISO extended the ASCII codeset to
8 bits (256 characters) and defined a complete set of characters needed to support most VYestem
European languages. This standard is known as the ISO 8859 8-bit standard codeset th}e:t 12 no;v
widely used in Europe. Other 8-bit standards are being developed by ISO to support the Greek,

Cyrillic, Arabic and Hebrew languages [1].

1.3 Codesets for Multilingual Environments

For almost all computers, a character is an 8-bit quantity. This means that a character can have one
of 256 different code values. As mentioned earlier, ASCII has standardized the meaning of code
values 0 to 127. If the codeset of a given language can fit within the range 128 to 255, the codeset of
that language can easily coexist with ASCII in a document.

In general, issues involving multilingual documents can be grouped into two categories:

1. Documents that contain 7-bit ASCII and another 7-bit codeset in the range 128 to 255.

2. Documents that contain 7-bit ASCII and two or more 7-bit or 8-bit codesets.

Documents in the first category are relatively easy to deal with. That is, there would be no
ambiguity in identifying the correct codeset of any given character in the document (code values
0-127 are ASCII and 128-255 are the other codeset).

Documents in the second category are more difficult to deal with since code values 1. 8-255 of
different codesets overlap and cause ambiguity. To illustrate this point, consider the case when ISO
8859 and the 8-bit Arabic standard coexist in a document, In such a case, a code value of 155 would
be impossible to identify. That is, one could not tell which codeset it belongs to.

Problems of multilingual support are now being addressed by ANSI X3L2, ISO Draft Interna-
tional Standard 10646, and the Unicode Consortium. The Unicode Consortium, for example, is
developing a fixed-width 16-bit codeset that represents all languages of the world without any
ambiguity [3]. But until a standard 16-bit codeset is adopted by the computer industry, an effective
method for identifying the codeset of any given character in a multilingual document is needed.
A common method has been the insertion of special embedded commands [2] within the document.
For example, if a 2-byte character sequence such as 255,17 can be interpreted as a switch to codeset
number 17, the following sequence of characters:

[25517 [89]65] 37 [255]2a 6525529172 |

can be interpreted as a 6-character segment of a document of which the first three characters belong
to codeset 17, the fourth character belongs to codeset 24, and the last two characters belong to
codeset 2. Therefore, when the document is scanned serially, there is no ambiguity as to which
codeset each character belongs.

Embedded commands, however, have two major drawbacks that make their usage undesirable:

1. For random accesses in a document, the insertion of embedded commands is of no value
unless the “vicinity” of the accessed location is scanned to find and interpret the commands.
For many applications, such as data base management systems, finding and interpreting the
vicinity of an accessed location is not acceptable.

2. Insertion of embedded commands in a document forces any application operating on the
document to know the “syntax” of the commands and be able to parse them. This means that
none of the existing thousands of applications can work with such documents.

Therefore, since the usage of embedded commands severely limits the usability and portability
of documents, a properly designed Persian codeset for encoding bilingual English-Persian documents
should not require the assistance of such commands.

1.4 Existing Persian Codesets

Traditionally, international standards organizations have considered Persian to be an extension of
their standard Arabic codesets [3]. Although the Persian character set is a superset of Arabic, there
are some key differences that affect the design of a Persian codeset. For instance, Persian characters
have a different collation order, and the construction of compound Persian words require two forins
for some characters (see Section 2.3).

In recent years, several codesets for Persian characters have been developed. Most of these
codesets, however, are ad hoc schemes that have not been published. An exception has been a
codeset published by the Iranian Institute of Standards and Industrial Research. This institute has
defined the ISIRI 2900 codeset as the standard Persian codeset [9]. The ISIRI 2900 codeset has
addressed many issues of the Persian language and has been an important step in finalizing a
standard codeset for Persian. However, in its current form, it falls short of being a final standard.

2 The Persian Language

In order to define a codeset for proper representation of Persian text, we have to address some
of the more important aspects of the Persian language. These aspects include: flow of text from
right to left, a character set composed of Persian and Arabic characters, multiple shapes for each
character (depending on its position in a word), non-spacing marks, special punctuation marks,

and compound words.

2.1 Direction of Text

Persian texts read from right to left. At first glance, the relevance of the text’s direction to a character
encoding scheme may not be obvious. However, to coexist with the ASCII codeset in a document
(see Section 1.1), we shall show that direction should be an intrinsic property of each character in
a bilingual document. This implies that even those characters that have the same shape in English
and Persian (such as *, ‘+', or even a space ’ 7) should be included in a Persian codeset.

There has been much discussion about direction as an intrinsic property of characters in several
papersand technical reports [2,4,6,7] and the reader is strongly encouraged to read them. However,
we will briefly discuss the subject here because of its importance for the design of a Persian codeset.

Let’s define text that reads from left to right as L-fext and text that reads from right to left as
R-text. The next two lines are examples of L-text and R-text respectively:

This text reads from left to right.

Syt ol o 4 oy 5l e
The problem we are addressing is how to correctly display a line containing both L-text and R-text
without inserting embedded commands. To illustrate this problem, we will give a simple example

Typing »
Typing
Typing s
Typing .=
Typing 5
Typing b s

Figure 1: Example of a reflected segment.

in which we assume that the current document direction [4] of our display is L-mode, meaning that
paragraphs are anchored from the left. Suppose that we want to enter and display the following
line:

Typing -, . in English text is fun.
We refer to the order in which characters are entered as the logical order. Therefore, the logical order

for the above line is:

(I felifefe] - LT e l= e[[i]n]
Note that when displaying this line, we don’t want to see the text in its logical order; instead, we
want to see it in its visual order. To maintain correct visual order when encountering R-text, we
have to start a reflected segment - a segment where characters are pushed in the opposite direction.
Figure 1 shows how R-text is reflected in our example. As soon as we encounter the next L-text, the
reflected segment ends and characters are displayed in the “normal” way.

Therefore, to produce the correct visual order, it is important to recognize L-text and R-text
without ambiguity. Since we do not want to impose any structure on a document, the only solution
is to recognize these segments by looking at the code for each character. We can thus define L-
characters and R-characters for representing English and Persian characters respectively. Now, it
should be evident that we need an R-character for space (‘’) in addition to the L-character space of

ASCIL If the space between the words “;2” and “ ~,6” is changed to an L-character, the visual
order of the line becomes:

o

Typing o= ~, in English text is fun.
This happens because the L-character space ends the reflected segment “¢,.”, and the next R-
character starts the next reflected segment “ . ,”.
The above example illustrates why direction must be an intrinsic property of each character and

why we must have two different codes for those characters that are represented by similar glyphs
in English and Persian.

2.2 The Persian Character Set

With the exception of four extra characters (¢, ’E’, ‘s, and *3’), the Persian character set is very
similar to Arabic. Like Arabic, characters may assume up to four different shapes depending on
" are different shapes of the same character.

N

their position in a word. Forexample, ", ‘¢, «’,and ‘s
The proper shape of a character can be determined automatically during the display of text and
need not be stored in a file. The process that determines the shape of each character is sometimes
called contextual analysis. This process can be efficiently performed by various output devices such
as terminals, terminal emulators, windowing systems, and printer preprocessors. Therefore, it is
not necessary to include all four shapes of a given character in a Persian codeset.

Persian also employs the Arabic non-spacing marks which act as vowels. The usage of non-
spacing marks in Persian is not as widespread as in Arabic. However, they cannot be omitted from
a Persian codeset since their use is essential for both indicating the proper pronunciation, and in
case Arabic text is included in a Persian document. Classical Persian literature uses a mixture of
Persian and Arabic texts. For instance, the first verse (tl | ~a4) in Hafez’s book of poetry is entirely

in Arabic, as shown below:
gSis sl Jy Js! 3905 ol e o Lgf,t; s L P uj\:.J| l;flz L Y

The punctuation marks used in Persian are similar to English, except that guillemets (‘«’ and
‘»’) are often used as quotation marks.
Persian numerals are different from English but, like English, mathematical expressions are read

from left to right. Thus Persian numerals are not R-characters. Numerals, the decimal separator,

and other mathematical operators are considered special L-characters (refer to Section 3). The

following example illustrates some of these points [6]:
Ddee Gl 55 O)ke jlaae 4lSL

n—\+Y(n—\)(n—Y) ¥(n—\)(n-Y)

+
Ym rm'’ tm’

L%b&wué;“b‘wljb ..\..“LQC:"/V\AYA UT)J‘SA:»'«-J Z\—_a)+m¢_—a) d)L..AT.‘-_JL'AS
eola) F 2, SIS

2.3 Compound Words and Plurals

Persian differs from Arabic in two major ways: 1) it has numerous compound words, and 2) it uses
a suffix to indicate plurals. Compound words are composed of two or more words with no spaces
in between. Similarly, Persian words are pluralized by appending the suffix “l” also with no space.
Both these cases pose a particular problem for the contextual analysis of Persian texts.

In case of compound words, contextual analysis should not join adjacent words that compose
a compound word. For example, the word “;l.2>”, is composed of the words “wiz” and “;lul”.
The contextual analysis algorithm has to be instructed to use the ending form of ‘~' (not its middle
form ‘_) yielding “ 5\uleia" (not “;lulkix>"). In case of pluralization, the contextual analysis

algorithm is faced with the same problem. For example, the plural form of “e4Ss5” is “Ws4Sa5” and
not “lga aSes”.

The most elegant solution to support this feature of Persian is to assign two codes for each
character that has a different glyph for its middle and ending form. This way, one can explicitly
choose the ending form when entering compound words [5]. Codesets that do not distinguish
between the middle and ending forms of a character usually employ a special invisible non-joining
character to delimit the words in a compound word. Most Arabic codesets take advantage of this
non-joining character for composing compound words [3]. This approach may be adequate for
Arabic, but is completely impractical for Persian [5] due to the abundance of compound words in
Persian.

3 Design Goals

Alphabet: Support for all Persian and Arabic characters is essential. The ISIRI 2900 codeset has
left out three Arabic characters: */, ‘#’,and ‘¢’. As mentioned in Section 2.2, many works of classical

Persian and Islamic literatures use extensive Arabic text and any encoding scheme must be able to
encode these texts.

Numerals: Numerals in Persian look different from numerals in English. Both numerals and
mathematical symbols in Persian are considered special L-characters. They differ from other L-
characters (such as English characters) in that they do not end the reflection if they occur inside a
reflected R-segment; instead, this special L-segmentbecomes a nested reflection itself [7]. Therefore,
the Persian codeset should also include mathematical symbols. Although mathematical symbols
used in Persian resemble those used in English, their glyphs are usually specifically designed to
match Persian text and numerals. The ISIRI 2900 codeset does not include the division symbol ‘+’,
and relies on the /’ symbol, whic* used as the d=cimal separator in Persian, and not as a division

symbol. For example:

ARAL - il T o

Non-spacing Marks: Non-spacing (diacritical) marks are essential in representing Persian litera-
ture and Arabic texts (see Section 2.2). They are needed to show correct pronunciation of words and
also to distinguish between different words (with different meanings) thatare spelled the same way,
but pronounced differently. As an example, consider the words: “3 3", “3 3, and “s_§” which,
without non-spacing marks, are all written the same way but have three different pronunciations
and three different meanings. Sometimes it is possible to guess the correct pronunciation, and thus
the correct meaning of a word from its context in a sentence, but notalways. Consider the following
example:

S, oS

S, 5

in which, without the non-spacing mark (‘~’), the word “_S” can be pronounced in two different
ways, yielding different valid meanings in each sentence. The ISIRI 2900 codeset does not

incorporate any non-spacing marks.

Punctuations Marks: A complete set of punctuation marks is essential for representing modern
Persian texts. Most punctuation marks in Persian resemble those used in English; except that
the comma, the semicolon, and the question mark in Persian are represented by ‘/, ‘', and Y
respectively. Although the other punctuation marks look the same as English punctuation marks,
we still need a complete set for Persian since, when used in Persian, their direction is from right
to left. The ISIRI 2900 codeset has left out most punctuation marks (e.g., the semicolon, the single
quotation marks, the guillemets, square brackets, curly braces). The following example is taken
from a poem by a famous contemporary poet:
yama 36 Jlam 53 oS 35 T
R LY R BTRT-C PR il o pleah
$ab wls e L]
(WA aming ¢duyly 0 Sl cad o canlials 5T «2JBO1 sdgr)

Compound Words: The codeset should aid the contextual analysis algorithm to determine the
proper shape of characters for compound Persian words. As described in Section 2.3, we have to
assign two codes for each character that has a different middle and ending form.

Collation: The characters in a Persian codeset should be organized in the proper collating order,
which is slightly different from Arabic [9].

Bilingual Text: The codeset should be able to support both ASCII and Persian texts in the same
document without using embedded commands for switching between languages (see Section 1.3).
Therefore, we need two 7-bit codesets arranged into a single 8-bit space such that characters 0-127
are reserved for ASCII and 128-255 are reserved for the Persian codeset. As a result, English and
Persian characters can be easily distinguished by their eighth bit. The ISIRI 2900 codeset occupies
the same space as ASCII characters, therefore requiring special embedded commands to switch
between codesets.

Bidirectional Text: The codeset should define a complete chéracter set for Persian in order for
display devices to perform the proper reflection algorithm without using embedded commands
(Section 2.1). Therefore, we have to include all numerals, mathematical symbols, punctuation
marks, and even the space character in a Persian codeset [7]. The ISIRI 2900 codeset does not define
a complete set of R-characters for Persian.

0x8 | 0x9 | OxA | 0OxB | O0xC | 0xD
0x0 | SP| o i >
0x1 | # " ! \ % :
0x2 * @ " Y | >
0x3 | _ & = Y H o
0x4 < ’ Ju, f o >
0x5 > = ‘ 0) ¢
0x6 | { ' # < 3
0x7 | } s v | o, |
0x8 | [’ (Al e |
0x9 | 1) \ ; 5
oxa | ’ T x ¢ ; £
0xB L : + « <o ~
0xC | \ + » H o
0xD | | -7 o] =
0XE | % ’ . | > |
OxF | $ ‘ / s z -

Table 1: The FSCII Codeset.

4 The Proposed Codesets

We propose a new codeset that has two components: the FSCII codeset for information interchange,
and the Farsi Standard Font Encoding (FSFE) for encoding character glyphs. Files stored on disk
will contain FSCII characters in logical order. Display agents such as terminals, terminal emula-
tors, windowing systems, and printer preprocessors will be responsible for performing contextual
analysis on the FSCII input and displaying the proper shape ot each character from a given Persian
font. In order to standardize the font encoding, we defined FSFE which includes all possible glyphs
for Persian characters.

4.1 The Farsi Standard Code for Information Interchange

Table 1 shows the proposed FSCII codeset. It is an 8-bit codeset that assigns codes 0x0 to 0x7F to
the ASCII characters and codes 0x80 (upper left) to OXFF (lower right) to Persian characters.
FSCII achieves all of the goals set out in Section 3. Character codes 0x80 to 0x9F have been
assigned to special symbols and non-spacing marks. Character codes 0xA0 to 0xBC include the
right-to-left space character, punctuation marks and mathematical symbols. Finally, 0xBD to 0xFE
includes all other Persian and Arabic characters. Table 2 illustrates sample usages for some of the

Code | Name Glyph Examples
0x96 | alef above ' 3o ¢ Jaston
0x97 | fathatan : Le S
0x98 | dammatan ¢ whiie Il
0x99 | kasratan al

0x9F | ya maksureh ¥ b gl

OxBF | hamza s sl
0xCO | hamza on alef i JCA PP
0xC1l | hamza on waw Yy Vi oalse
0xC2 | hamza under alef | (pols 3) eyl
0xC3 | hamza on yeh : et i
0xC9 | teh marbuta i ladls s i

Table 2: Sample usage of some FSCII codes.

FSCII characters that may need clarification.

4.2 The Farsi Standard Font Encoding

As we described in Section 2.2, terminals, terminal emulators, windowing systems, and printer
preprocessors (filters) must be able to perform contextual analysis on the text and display the final
form of a text in the correct visual order. The encoding scheme for display fonts is outlined in
Table 3. Since Persian displays accept FSCII characters as input, they can easily recognize L-text
and R-text and switch their currently displayed font accordingly.

Notice that codes 0x0 to 0x1F have not been defined and codes 0x20 to 0x7F correspond to
FSCII codes 0xA0 to 0xFF. Codes 0x80 to 0x9F correspond to FSCII codes 0x80 to 0x 9F. Codes
0xA0 to 0xEO include the additional glyphs. Non-spacing marks assigned from 0xE6 to 0XEF
differ from those defined in 0x96 to 0x9F in that they are the connected form used by terminals
that cannot place non-spacing marks on top of characters [7]. Codes in the last column include
ligatures that are commonly used in Persian.

FSCII input (usually from either a file or keyboard) is translated into FSFE for display devices.
Remember that the range 0x0 to 0x7F of FSCII is the same as ASCII. A code in this range is nota
Persian character and is not translated into a code in FSFE. A FSCII code in the range 0x80 to OXFE
is translated into FSFE according to the algorithm shown in Figure 2 (written in the style of the C
programming language).

0x2 | 0x3 | 0x4 | 0x5 | 0x6 | 0x7 | 0x8 | 0x9 | OxA | 0xB | OxC | 0xD | OXE | OxF
0x0 | SP | o | =4 - L]] & = ¥
0x1 | ! \ 5 ¢ | < § # . Ll e |=| X p .
0x2 | " Y | =l | S]]l e | L | xlga| K Yy
0x3 | = v : - ! Sl & || =& b
oxa| g | Y | | s | L | g < , L | | K Y
0x5 | « 6 . R > R b
0x6 : i4 - 3 b ¢ { ' e | == | ke S . Y
o0x7 | ¢ v : 3 c 5 } : - | & | & | = - b
0x8 | (A < 5 ¢) [’ — | | & - el i
0x9 |) \ ; 3 P 3 1 AU T It P = J
OxA | X ‘ 3 3 gl s ’ i s | = [e g ‘
0xB | + «) ~ $. ‘ ’ “ | - -~ Z ¢
0xC | =+ » H o e ; \ = e+ - ?
0xD = T < -~ 3 5 | i S | e [A “ -
OXE | . [=l Ao || % I ERN P R R
OxF | |/ P c - 1 $ ’ P S I . L

Table 3: The Persian Standard Font Encoding.

To illustrate a sample translation performed by the algorithm of Figure 2, an example of FSCII
and FSFE encodings of the phrase “ 4% 4" is shown below (the first row is FSCII and the second
row is FSFE):

OxXFA » | OxF5 4| OXFA » | Ox9F °| 0xDD % | OxFA » | 0xD8

0x7A » | 0kD7 - | OXDD 4 | 0x9F “| 0x5D < | OXDC ¢ | OXxBA -

5 Experience with FSCII and FSFE Codesets

The proposed codesets, FSCII and FSFE, are the direct results of four years of designing and
prototyping a comprehensive programming environment for developing Persian applications. This
work has been performed on a network of Sun Microsystems SPARCstations running Solaris 1.0
and OpenWindows 2.0 (X11 Windowing System). This particular configuration was chosen because
of Solaris’s internationalization enhancements to UNIX, its powerful windowing system, and its
open architecture.

10

if (current char == farsi) {
if (previous char !'= attachable from left)
current char = first FSFE form;
else
current char = middle FSFE form;

}

if (current char == farsi && previous char == farsi) {
if (current char != attachable from right &é&
previous char != last FSFE form) ({
if (previous char == first FSFE form)
previous char = last-by-itself FSFE from;
else if (previous char == middle FSFE form)
previous char = last-attached FSFE from;

Figure 2: FSCII to FSFE conversion algorithm.

! @ »|# s 9% M~ & * X[() O =T Fr |
1 N2 Y13 ¥4 ¥|5 o6 #£|7 V|8 A[9 0 -f- —|= =\ -
@ | # | sl |l& | ™ N \
Q W |[E R T Y U i O P { }
2 2 b 3 5 & £ » > >[=[] =
o 4 z o » . & L ° ' { }
A S D F G H i|] K It . A
& ~ 2 2 J | 7 H |, sl f‘
T = ; -
Z X C IV JIB N M A< 51> ? S
L 3 Y 3 K H | PR | Y VA
s < | >

Figure 3: The Persian keyboard layout.

The first step in this effort was the development of ParsTerm, a Persian terminal emulator for
the X11 Windowing System. Today, advanced windowing systems allow us to implement such
terminal emulators entirely in software. ParsTerm runs as an X client and takes control of the
keyboard and screen processing. The user can select the current document direction (L-mode or
R-mode), as well as the current input characters (L-characters or R-characters). If R-character input
is selected, all keyboard events are translated according to the Persian keyboard layout (Figure 3).
This keyboard layout was based on the ISIRI 2901 standard layout [10] with modifications for new
FSCII characters and the SPARCstation keyboard. For example, the ‘] key generates the FSCII code
for 5’ (code 0xCA) when unshifted, ‘<’ (code 0xCB) when shifted, and ‘' (code 0xC9) when holding
down a special modifier key (usually Alt).

The screen management code in ParsTerm performs the bidirectional laying out of text on the
screen, as explained in Section 2.1. Also, ParsTerm performs contextual analysis on its input and

11

ole s

parsis 1> set prompt = "

ls cuwmyd alias fwlss
Sy tpla
Frost Elliot sdse pel.p (oapdd el ol el Ll el
»/% 3Ae grep fwle
ool gl CL L n (A Lbotpan s | /0l G
I3 s osee (A 3, pless) Y/ le
slisn (Lo o Ghe iy sl wsUoen 1Sl ly figaid
cat ../capitals iwles
ol wl =
%I5.3$ﬁ
(U S R
S | T
sort ../capitals fuwls>
(PN Y P V)
PR TRy et
Ol e |l e
as bl tgla s
VYo tmatr PV epndys AV:IOY:IDY
date ‘vls s
Mon Feb 10 17:58:20 PST 1992
tola s
IR

Figure 4: A sample ParsTerm session.

thereby converts FSCII to FSFE. As a result, many text-based programs written with no knowledge
about right-to-left languages can be used with Persian texts. For example, this document was
prepared using the unmodified executables of the standard vi and Emacs editors. Otherapplications,
such as database management systems, could also be “Persianized” in this way. Figure 4 shows a
screen dump of a sample session in ParsTerm.

We also used an enhanced version of the powerful TgX typesetting system [6] that is capable
of mixing right-to-left with left-to-right texts for the final typesetting of this article. First, the TgX
document was created and edited using vi, then the document was passed through a series of
filters that performed the contextual analysis, as well as Persian ligature processing, and then it was
processed by TEX.

6 Summary and Conclusion

Adoption of a standard encoding scheme for Persian is essential for development of Persian appli-
cations and advancement of computer industry in Iran. Such a codeset should include all possible
Persian and Arabic characters, as well as numerals, non-spacing marks, and punctuation marks.
We have shown that, in order to mix right-to-left text with left-to-right text without using embedded
commands, direction has to be an intrinsic property of each character. Therefore, a Persian codeset
should also include symbols that are common with the ASCII codeset. In addition, display termi-
nals and windowing systems can perform the contextual analysis on the incoming input stream
and choose the correct shape of characters. Moreover, compound words and rules for plurals in
Persian make it necessary to include two forms for most characters: one that follows the normal
contextual analysis rules, and another that ensures the ending form of that character (regardless of
its surrounding characters) to be displayed.

The ISIRI 2900 codeset has taken an important step in defining a standard for Persian character

12

encoding, but it does not meetall the requirements for a complete Persian codeset. It excludes some
Arabic characters, all non-spacing marks, many punctuation marks, and several special symbols.

The new proposed Farsi Standard Code for Information Interchange (FSCII) meets the outlined
requirements for a complete Persian encoding scheme. That is, almost all published Persian texts
in existence can be encoded with FSCII. In addition, a standard for encoding the glyphs within a
Persian font (FSFE) has been proposed. FSFE assembles all character glyphs in a single 8-bit codeset.
Both FSCII and FSFE codesets have been implemented in a prototyped Persian programming
environment, and a complete document preparation system has been developed using these two
codesets. This article itself has been entered, stored, typeset, and printed in its entirety — including
all tables and figures - using the unmodified executables of existing applications.

We strongly encourage open discussions on the FSCII/FSFE codesets and would like to see other
developers experiment with them, with a commitment to expediting a final and complete standard.

It should be emphasized that the Persian language needs to be represented on the various
international standards committees in order to address issues specific to Persian and not have it be
considered an extension of Arabic.

7 Acknowledgements

We would like to acknowledge the efforts of the Iranian Institute for Standards and Industrial
Research for their pioneering work in this area. Also, special thanks to Hafez Dadeh-Negar, Inc.,
(,Kesls Lil> oS ,2), for providing the Persian fonts used in typesetting this paper.

13

References

[1] Unicode: A New Standard for International Data Sets. SunWorld, July 1991, Vol. 4(7), pp. 62-68.

[2] Joseph D. Becker. Multilingual Word Processing. Scientific American, July 1984, Vol. 251, No. 1,
pp- 96-107.

[3] The Unicode Standard: Worldwide Character Encoding, Addison-Wesley, 1991.

[4] D. Berry and U. Habusha. Vi.iv, a Bi-Directional Version of the vi Full-Screen Editor. Electronic
Publishing, Vol. 3(2), pp. 3-29.

[5] M. Sanati, M. Dadashzadeh, and M. Dadfar. Iranian Standard Code for Information Interchange
(ISCI). Computer Standards and Interfaces 6 (1987) pp. 427-432.

(6] D.E.Knuthand P.MacKay. Mixing right-to-left texts with left-to-right texts. TUGboat, Vol. 8(1987)
pp- 14-25.

[7] M. Zadeh and S. Kazemi. ParsTerm: A Persian Terminal Emulator for X Windows. Parsis, Inc.

[8] M. Zadeh and S. Kazemi. ParsTEX: A Persian Typesetting System. Parsis, Inc.
ATEY 53 o J3l Dl Ve 3100kl 5Lt () 55 Sledbl Jobs o i i 5wlind ache [4]
AN ,IBLl §led i galS S wmio (65, s L5 W 5 Uiy > 1t Sl 5 lwkel ebe [1e]

AFEY g4 Jl Ol

14

This page is intentionally left blank. Farsi Character Set:

The Problem of Multiple Standards

Mahmood Reza Ziaei
BRAIN Computer Systems GroupT

January 3, 1993

Abstract

Iran’s computer community has not yet agreed on a unique Farsi character set for the
purpose of information interchange. Different vendors have come with their own character sets
which are in no way compatible with each other. This paper explains the reason behind the
availability of these multiple standards. The author brings in focus the characteristics of

commonly used Farsi code sets and concludes that introduction of a unique standard might
not be the one and only solution ahead.

T BRAIN Computer Systems Group, P.O. Box 14455-161, Tehran, Iran,
Tel: (021) 634-279 Fax: (021) 980-102

1 Farsi Standards: The First Step

As yet, there is no widely accepted standard available for Farsi character set. Standard 2900 on
Iranian Standard Code for Information Interchange and Standard 2901 on keyboard layout for Farsi
language were released in 1989 by Institute of Standards and Industrial Research of Iran and have
remained unchanged since then.

The 7-bit code of standard 2900 uses ISO code extension facilities to define a G1 set of 94 Farsi
characters. Users can switch between G1 and GO (English characters) sets with the aid of control
characters. Excluding mainframes and larger systems, the time standard 2900 was introduced, most of
computers in use were operating in an 8-bit environment, therefore no way to look back and practice
standard 2900.

So far, no 8-bit standard has been offered for Farsi information interchange but work is on the
progress toward preparing an early draft of this standard. For a more detailed discussion of Farsi
character sets see article done by M. Ziaei entitled “Farsi Character Set: The Problem of Multiple
Standards” printed in this issue.

As far as keyboard layout is concerned, major software vendors are agreed on using standard 2901
although Rayaneh Saz, Dadeh Kavi, and Microsoft are insisting on their own way of laying out Farsi
keys on the keyboard.

1.1 Farsi Character Sets in Use

Standard 2900 was not well-received by software developers and went obsolete shortly after being
released. Iran System and SinaSoft Farsi character sets were and still are the most widely-used code
sets today. Rayaneh Saz, Dadeh Kavi, and Alis Farsi character sets are also used [see appendix
Al. SinaSoft character set is supporting that of Iran System, but not vice versa. Neither are supporting
standard 2900 or those of other companies.

Not bringing in light the disagreement over the order of characters in Farsi code sets, software
vendors are not agreed on the number of characters that should be placed is such a table. Since a
Farsi letter might have up to four cases (English has just two), many argue that all possible four shapes
of letters such as ¢ should be included in the character set.

Another company, Microsoft, has entered the fray with its new character sets called Microsoft Farsi
code and Microsoft Farsi font. Microsoft Farsi code is used for the purpose of storing, retrieving, and
transmission of Farsi data while Microsoft Farsi font is used for the representation of Farsi data on
the screens.

The availability of so many Farsi character sets has led to incompatibility between data files
created by various applications. Users who are running a software of company x, are forced to have
x character set in place. Surprisingly, software vendors do not seem much concerned in supporting file
formats of their rivals through conversion tables or other utility programs.

1.2 The Order of Farsi Characters

Despite major differences, almost all Farsi standards are sharing a common point; they do not touch
the English characters placed in the first half of the ASCII table. Since the order in which Farsi

17

characters are placed in the code set is a determining factor when it comes to sorting data, these
standards have managed it somehow to keep the order of characters in the table just as the order of
letters in Farsi alphabet.

Since codes 176 to 223 are reserved for tabulation characters, some developers prefer not to
replace characters residing in these places with Farsi characters. This, in spite of promoting the
compatibility and portability of code set, brings to attention the problem of space limits for the
placement of Farsi characters. Both Iran System and SinaSoft character sets have placed Farsi
characters out of this boundary.

1.3 The Forthcoming 8-bit Standard

A committee is currently investigating the technical sides of an 8-bit Farsi character set and is
supposed to announce a new standard for the replacement of standard 2900. The new standard aims
to solve the problem of incompatibility between existing standards and make it possible for users to
easily transfers files from one application to another. Apparently, the new standard does not intend to
add one more new character set to already crowded list of code sets. Instead, it sets a protocol for
data transfer and interchange. The new standard will allow software developers to continue building
applications based on their own character sets but encourages them to use its proposed character set
for the purpose of data transfer and interchange.

The Farsi data can be displayed, stored, and retrieved as before but when it comes to transferring
data between computers in a network or between users through communication lines, applications
should use a filter to convert the data to the specified standard format prior to dispatching.

On the receiver side, another filter is used to convert data to the original format or any other
format preferred by user. Although this would work fine as far as DOS and Windows environments
are concerned, Unix users might face some difficulties since they can hook up to numerous system
resources and transfer data without going through passage filters.

2 Generating Farsi Fonts for Text Mode

In order to display Farsi information on the screen, Farsi characters should be designed and placed in
the character set. In Farsi systems, mathematical, Latin, and graphical characters residing in the
second half of the ASCII character set (128..255) are being replaced with Farsi characters. Depending
on the type of graphics adaptor in place, this could be done through software or hardware means.

2.1 Farsi Fonts

Each font is designed as a meaningful matrix pattern which is copied to an area of memory. Since on a
typical IBM PC-compatible VGA adaptor, characters are constrained to a 9- by 16-pixel matrix cell, it
is difficult to design a good-looking font for Farsi characters in text mode. The problem is that the
vertical and horizontal ranges of Farsi and Arabic characters are beyond the range of this space. The
existence of diacritical marks in Farsi is adding to this complexity.

To come up with a solution, some of Farsi software developers including SinaSoft have allotted two
character spaces to displaying a single Farsi character such as &.

18

The allowed matrix cell dimensions for CGA, Hercules, and EGA are 8x8, 8x14, and
8x16 respectively. To facilitate the process of designing fonts, some vendors have developed font
editors which enable users to design new fonts or modify existing fonts easily. Font editors save
designated fonts to a file in a special format. Later, this file is used to download fonts into computer.

2.2 Graphics Adaptors

Only EGA, VGA or higher graphics adaptors are capable of downloading user-defined fonts through
use of device drivers or software routines.

To download Farsi characters into MDA, Hercules, and CGA graphics adaptors, one should have
its ROM BIOS re-programmed with an EPROM programmer. Once this took place, users with these
types of adaptors are not able to work with any character set except the one their ROM has been
prepared for. It seems not to be a good deal in a confusing market of character sets. That’s why EGA
and VGA cards are the most widely used graphic adaptors in Iran today.

In VGA and EGA, BIOS load generator function 11h is used to download user-defined fonts [3].
This function consists of fifteen sub-functions for loading text fonts either from ROM or from a
memory area in which user-defined characters are residing. After designing the proper font for a
Farsi character in a font definition table, the address of table (array) is passed to this function along
with its allotted ASCII code.

Farsi developers usually write device drivers to download user-defined fonts during system boot
phase. In this case the downloaded Farsi characters are remained in memory while the system is
power on. Since this might cause some conflict with other application programs system is running,
developers are switching to another method which is mounting the Farsi module on the Farsi
application itself.

3 Farsi Keyboards

Luckily, there is a general agreement on the way Farsi letters should be assigned to keys on the
keyboard. With some little modifications, vendors have accepted Farsi keyboard layout expressed in
standard 2901.

It is long expressed that English/US QWERTY keyboards are not as efficient as much as their
counterpart Dvorak’s keyboard since the latter has been designed having the results of several
efficiency tests in mind. Apparently, the layout of Farsi keyboard is not based on any scientific
research done in order to determine the most frequently used letters and put them on the most
convenient keys for typing.

Like English keyboard in which upper-case letters are typed using the combination of Shift key
and lower case letters, Farsi upper case letters are typed in a similar way. However, since a number
of Farsi characters have more than just two cases, some vendors have also allotted keys to represent
these forms.

Standard 2901 says that software algorithms should take the responsibility for recognizing which
form of a character should be displayed according to context. However, since standard 2901 is itself

19

based on standard 2900 and that is being revised, it is not unlikely to have a new standard Farsi
keyboard soon.

3.1 Intelligent and Dumb Keyboards

The Farsi alphabet consists of 32 basic characters (Arabic consists of 28 characters) and the stretch
character used for beautifying Farsi scripts. A Farsi character might have up to four different shapes.

& é R &

Figure 1. Each Farsi charactrer may have four different shapes.

Standard 2901 has tried to minimize the number of keys put on the Farsi keyboard to just one key
for each letter and not to have keys assigned for all cases. This puts an extra burden on the shoulders
of software to determine where and when to use which form of the character.

Keyboards with this feature are called intelligent keyboards since the user just types the letter and
the proper shape of character would be determined according to the context.

Dumb Farsi keyboards are those that, like Farsi typewriters have defined keys for all cases of a
character. Those in favour of this kind of keyboard argue that for professional typists, who have got
used to Farsi typewriters, this style of keyboard is both more familiar and productive. Dadeh Kavi has
his keyboard layout arranged in this way.

3.2 Diacritical Marks

The standard 2901 does not specify keys for representing diacritical marks. Although diacritical marks
are not frequently used in modern Farsi (unlike Arabic), one might want to include such marks in his
or her scripts.

Dealing with diacritical marks on the display is not possible. IBM PC compatibles and computer
terminals have a fixed cell size for displaying characters. One or the other character can exclusively
occupy the cell space on the screen, but not both at the same time. This makes it impossible to put
diacritical marks on Farsi letters as far as working in text mode is concerned.

However, when it comes to printing, a 9- or 24-pin dot matrix printer can easily have diacritical
marks printed in the same cell as of the letter.

The solution that some vendors have come up with it is to display the diacritical mark in
character cell next to the letter that should be vowelized. The major drawback is that this causes
inconsistency between Farsi letters and reduce the readability of Farsi script. Almost all text-based
Farsi desktop publishing packages are using this method of representation to put vowels on letters.

33 Support for Farsi Keyboard

The majority of Farsi programs in market are not offering support for different types of keyboards.
The most widely used keyboard layouts are those of standard 2901, Iran System, and SinaSoft. Layout
conforming to IBM, Facit, and Olivetti typewriters are also used. Also, the Farsi applications are not

20

generally supposed to offer users a way of defining his own customized keyboard layout. Standard 820
explains the Farsi typewriters keyboard layout.

4 Printing in Farsi

The early printers employed for printing Farsi scripts were daisy-wheel and chain printers. Although
these printers were producing better quality Farsi texts than today’s dot-matrix printers, they were
slower. The other major problem was that these printers were not capable of printing bilingual
Farsi/Latin scripts. To print in Farsi, users have to remove standard Latin wheel or chain belt,
replacing it with one having Farsi letters embossed on it. Therefore, users were able to print pure
Farsi or Latin scripts but not a mixture of two.

4.1 Downloading Farsi Fonts into Printers

9- and 24-pin dot-matrix printers are not subject to same restriction, since they let users to define fonts
for a brand new alphabet while preserving the standard Latin/English fonts. It is all done through use
of printer drivers which download Farsi characters into printer memory during system start-up or
upon user’s request. They can be embedded as a device statement in CONFIG.SYS file or as an
stand-alone .EXE file.

Apart from this, some Farsi applications automatically do the job when being started by users.
Printer manufacturers are dedicating escape sequence commands to this purpose which are used by
software developers to define new character sets for printers. The process is similar to downloading
Farsi fonts to display adaptors. Using the proper escape sequence users can replace the characters in
the second half of the printer code table with Farsi fonts.

However, some dot-matrix printers do not allow downloading Farsi characters into certain places
due to hardware incompatibility. With such printers it is no longer possible to keep a one to one
relation between Farsi characters downloaded into display adaptor and those downloaded into
printer.

Certain solutions have been proposed to address this problem. The technique frequently used is
to build an intermediate layer or filter to do some pre-processing prior to printing Farsi scripts. Since
it is quite possible to download all needed Farsi characters to printer (no matter the place), such a
filter can be used to scan characters in data file which is to be sent to printer. When it encounters a
Farsi character (e.g. character 149) which whose font is not residing on cell 149 of printer character
table, but on cell 255, the filter will add the displacement value of x (here x = 255-149) to character
code in order to find access to proper printable character on printer memory.

4.2 Printing Diacritical Marks

The problem of printing vowelized Farsi characters is largely solved with printers built-in capabilities.
Majority of text printers are capable of moving print head a character back to put the vowels and
sounds on already printed characters. Since, like displays, printed characters are also constrained to a
certain size of print matrix cell, it is difficult to produce beautiful printed Farsi letters particularly on
the 9-pin dot-matrix printers. However, 24-pin, ink-jet, and laser printers have no problem in

21

producing eye-catching Farsi scripts.

5 Editing in Bilingual

In Farsi, like Arabic, the direction of writing is right-to-left for text and left-to-right for numbers.
Whenever a Farsi character is being typed, depending on the fact that it is a numeral or an
alphabetical character, the cursor should show different behaviors. In case the incoming character is
a numeral, the cursor stands motionless, shifting the numbers one place to the left as they appear on
the screen. Meanwhile, typing a literal will cause the cursor to jump over the numerals and starts
accepting literals (see following figure).

Character typed Farsi text layout
none (initial state) Jw
Y (M Y.Jw
Y @ Yy J
o (m) ~pYY Sl

5.1 Handling Mixed Scripts

Due to the ever-increasing presence of Latin-based technical terms in modern Farsi, it is essential to
offer support for typesetting of composite texts.

The technique developed to address this need is somewhat analogous to one used for handling
Farsi numerals. Almost all Farsi applications, have a key devoted for switching between Farsi/English
languages. When in English mode, the cursor remains motionless and incoming characters shift one
place to the left as they appear.

Naturally, after any keystroke BIOS shifts the cursor one place to the right, so to make a program
write in Farsi it is essential to bypass BIOS control over display. To achieve this, Farsi applications
are controlling the direction of writing in the level of display.

5.2 Editing Features

The editing features used by Farsi developers are similar to those of their English counterparts. In a
typical input line designed to accept Farsi input, backspace is used to delete the last entered
character, although it moves in the opposite direction. The input line should support both insert and
overwrite modes. Functions defined for other keys should comply with non-written standard for keys.
Home and End keys are taking the cursor to the start or end of Farsi string currently being edited in
input line. Control-right and Control-left are used to move cursor word by word in backward and
forward positions. Delete key is used to erase the character residing on the cursor.

53 Contextual-Analysis Technique

The Farsi script is context sensitive. The shape of most of the characters depends on their position
within a word and the characters adjacent to them. Each Farsi character may represent up to four

22

possible cases of which only one would be correct in a particular situation (figure 1). It’s up to the
algorithm to find out from the context which form of the character should be chosen. Characters that
are ending the words are written in their upper-case format. Like English, a blank space is used to
separate the words. When a character stands alone or is at the end of a word, it is written in
upper-case (bold-stroke). When it occurs in the middle of a word, it is usually joining to the
subsequent letter. The algorithms used by different vendors to address this problem are much and
less the same.

6 Searching and Sorting

Prior to performing sort and search operations on Farsi data, it is necessary to call string processing
routines to reformat Farsi data into a more understandable pattern.

Some characters including stretch character (used to increase the clarity of Farsi texts) have no
place in Farsi alphabet and should be removed. In addition, since a Farsi character may be
represented by up to four different cases, each being coded as a separate character, provisions should
be considered to replace the different occasions of these cases with just one out of four.

Next, comes inverting Farsi strings, since when sorting, strings are being compared character by
character from left to right. Figure three shows a Farsi string before and after being processed by
string manipulation routines. Once, these processes are accomplished, well-established sorting
algorithms can be called to perform sort operation. Powerful software development kits (such as
Borland’s database toolbox and Novell’s Btrieve) are available which provides developers with
pre-written sorting, indexing and searching routines.

A <o B PEID

Figure 3. A Farsi string should be inverted prior to sort operation
A: In non-inverted state B: After being inverted

Although, the routines to perform needed operations on Farsi strings can operate on stored data,
it is more convenient to invoke them at the time of data-entry. This will help to store data in
ready-for-sorting format. The point is during data-entry and storage phase, due to operator typing
speed and the I/O delays, these routines can use these dead-times to perform their tasks.

These routines should also be invoked when user makes a query to convert the query to proper
format to be used to retrieve matching data. The tecHnique usually built into Farsi applications is to
store the data in a sort order using binary tree algorithm in indexed files. This makes quick and
immediate search operations possible.

7 Localization of Systems and Applications

So far, the process of translating software application programs into Farsi has been largely based on
making modifications in object code and not in the source level. Apart from translating the contents
of menus, status lines, windows, dialogue boxes, warning messages, and help files into Farsi, it is
necessary to find a way of feeding Farsi data into the application instead of Latin data.

23

To make these applications accept Farsi inputs from user, use of Terminate and Stay Resident
(TSR) programs has proved to be helpful. Whenever the user is in input line to enter Farsi data, with a
single keystroke he or she can invoke the TSR program already installed in the memory and start
typing in Farsi. Since a TSR program can work independent of application environment in which it is
called, users may also use them to type Farsi in DOS command line. Using TSRs, applications such as
spreadsheets and database management systems can work fine in Farsi.

7.1 Farsi Applications

When it comes to Farsi word processing and desktop publishing, use of TSR programs is not much
helpful. Many have found it much easier to develop such applications from scratch rather than making
changes in the package originally developed to be used by English users. Editing and word processing
features needed for manipulation of Farsi texts, a wide range of Farsi typefaces, and Farsi
spell-checking capabilities can hardly all be embedded into a package throughout making changes
to object code. So, there is no surprise that today there are several Farsi DTP and word processing
packages with reasonable capabilities available.

References

[1] Tayli, Murat and I. Al-Salamah, Abdullah. Building Bilingual Microcomputer Systems.

In Communications of the ACM, Volume 33, Number 5, May 1990, pp. 495-504.

[2] Smith, Ben. Around the World in Text Displays.

In BYTE, Volume 15, Number 5, May 1990, pp. 262-268.

[3] Phoenix Technologies Ltd. System BIOS for IBM PC/XT/AT Computers and Compatibles.
Addison Wesley, 1989.

[4] Kane, Gerry. CRT Controller Handbook.

Osbome/McGraw-Hill, Berkeley, California, 1980.

24

Farsi GUIs

by
Dr. Abdullah Ibrahim Al Salamah
This page is intentionally left blank. Dean, College of Computer and Information Sciences
King Saud University
P.O. Box 51178
Riyadh 11543
Kingdom of Saudi Arabia

Introduction

The introduction of English-based personal computers to the Middle East spurred the
development of bilingual systems and user interfaces. Many countries have successfully
implemented Arabic/English interfaces. These developments, however, were not coordinated nor
centrally planned. This led to the development of several incompatible Arabic character sets.
Nevertheless, the development of Arabic Windows™ by Microsoft® has by virtue of its elegance
emerged as a de facto standard for Arabic/English graphical user interfaces.

Currently there are efforts to develop adequate Farsi character sets. One trend is certain - there
will probably not be a centrally coordinated standardization process for Farsi. Undoubtedly, a de
facto standard will emerge. Hopefully, it will be adopted because of its adherence to the
principles outlined in this paper, and not because of its sheer volume in the market place.

Because of the close similarity between Arabic and Farsi, there need not be a long development
time in the construction of a Farsi character set. This paper proposes that Arabic Windows is an
excellent model to follow because of its support for the following theoretical principles.

Bilingual Systems - Design Guidelines

Ideally, a number of design guidelines are necessary for implementing bilingual systems and are

presented below. Arabic and English are used as example languages, however, these principles

are applicable to Farsi and English as well.

o The bilingual software process must mainly be a software solution without restriction.

o In order to address a large audience, the core of the bilingual system must run on widely
accessible powerful workstations.

o Problems inherent to the bilingual nature of typical input/output functions must be solved
whenever possible at the workstation level.

o Basic workstation capabilities must include advanced display management and resource
multiplexing mechanisms.

o The workstation operating system must support the desired bilingual user interfaces in order
to provide a complete and natural processing environment.

o The final system must include bilingual development tools and programming interfaces to
existing programming languages at the application layer.[1]

26

Graphical User Interfaces

One goal of all software developers is the perfectly intuitive interface - one that does not need a
manual. Such an interface makes the software accessible to more people. In the late 1970's,
developers at Xerox PARC took the initial big step by developing a Graphical User Interface
(GUI) for the SmallTalk system. The work of Xerox was later refined and popularized by Apple
Computer with its line of Macintosh personal computers.

Besides replacing command lines with a full-screen interactive display, GUIs aim to standardize
the interface for operations common to all applications such as opening, saving, and printing files.
The GUI screen displays a visual representation of the system. The user interacts with the system
through various symbols and objects. The graphical approach makes programs significantly
easier because it prompts with visual cues instead of waiting for imperative commands. A
graphical interface allows the user to see more information at a glance. And last, but not least,
GUIs have the potential to retain the user's interest by being more aesthetically pleasing.[3]

Platforms

The IBM-PC/AT/80x86 family of computers is popular and widely available due to clone
manufacturers. Many different models in vast quantities exist providing a wide spectrum of
power/performance at an affordable price. Furthermore, its open architecture supports a wide
range of software and can be used as building blocks to form more complex systems through
various networking strategies. IBM-PC and AT clones are the most common personal computers
in the Arab world. An Arabic GUI for this family of machines is necessary to provide its users
with the power of a GUI as well as attracting potential new users who may otherwise be afraid of
using computers.

Microsoft Windows

Microsoft introduced Windows 1 in the early 1980's, providing GUI capabilities for the IBM-PC
family of computers. In successive versions of Windows, Microsoft has steadily added features
that integrate the system's modularity around the concept of a document. Indeed, we currently
can have a single document that employs the services of several applications simultaneously.
Multimedia titles combine an extensive variety of data formats (text, picture, voice, ...) into a
single presentation. The impact of this innovative environment has a chance to change the way
we work with computers.

Windows is a DOS-based package that, in a sense, extends its power. It is also, in some sense, an
operating system that takes control over the machine and all connected devices. Programs
developed for Windows cannot run without it since Windows provides CPU and memory
management in addition to graphics display management (see Figure 1).

Windows shares the screen by creating separate windows for each program. The window's
border completely contains the output of the program. In order to protect the output in other

27

windows, Windows itself enforces this rule and will not draw any program's output outside of its
own client area. If a drawing's coordinates fall outside of the windows, the drawing is truncated.

WINDOWS APPLICATIONS WINDOWS MODULES DEVICE DRIVERS
GDI Display
Graphics Device Interface Printer
USER Sound
Keyboard
APPLICATION: SYSTEM
Mouse
MESSAGE | MESSAGE E_
QUEUE QUEUE | Timer
Serial Port
KERNEL Disk Services

Figure 1. Windows Design Outline

Windows promises to free programmers from accounting for every possible variety of monitor,
printer, and input device. Each device driver need be written only once. Instead of each software
developer writing its own complete set, each hardware manufacturer writes one general driver for
its products to run under Windows. Microsoft includes many drivers with Windows; others are
available from the manufacturer. From the application's point of view, it sees generic devices
supported by Windows rather than specific devices. By the same token, each device driver works
with every Windows application that needs that type of generic device.

Multitasking, device independence, objects embedding and linking, and a standard graphical
interface distinguish Windows from other programming environments. These powerful features
challenge developers to rethink their program designs. Before the advent of Windows,
applications were tending to grow larger and larger, acquiring ever more features and trying to be
everything to everybody. Under DOS, size was the only answer to the diverse needs of a large
user base. Windows allows another approach. It still supports large applications, but it also
permits smaller applications to act in concert, even if each comes from a different developer.
Windows applications exchange data, each acting as a module in a larger system. All the modules
run concurrently. They may be added or changed individually, allowing the user to select exactly
the desired mix of features. The combined power and flexibility of several small applications can
equal or exceed that of a single large program.[3][7]

28

Microsoft Windows with Arabic Support (Arabic GUI)

Microsoft introduced Windows v3.0 with Arabic Support by the end of 1991. Arabic Windows
supports Arabic at its internal level providing the most bilingual transparent environment ranging
from basic input/gutput functions to more sophisticated bilingual scale able fonts. Arabic
Windows, in its introductory release, shipped Arabic Write (a fully Arabic word processor),
Arabic Calendar (a fully Arabic calendar with appointments tracking and a Hijral calendar) in
addition to the Arabic input/output support of existing Windows applications.[5][6]

Currently, a large base of software written for Windows is available for Arabic users. Even
though they are not fully arabized, Arabic users are able to utilize these applications since they
serve their requirement4. An interview of Arabic users was performed who used Windows at
various levels. Some users had very little prior computer experience while others had extensive
experience. All users showed interest in using Arabic Windows for its ease and appealing
interface. As we analyzed it, users felt less strained when dealing with the visual interface
compared to conventional command line interfaces. They were able to navigate their way through
various Windows applications because of consistent menu conventions. They worried less about
an application's support of various input/output devices in addition to the language transparency.

Windows with Arabic support also has the ability to preserve the existing DOS Arabization
solutions on the IBM-AT family running as a DOS window. Operating Arabic DOS applications
in graphical mode supports bi-directional cut and paste.

Arabic Windows' recent introduction into the Arab world has only permitted a relatively short
time to judge its impact. Notwithstanding, it has received great acceptance among Arab
computer users and it has begun to be a de facto standard for several organizations. A similar
reaction for Farsi bilingual systems could occur if a Farsi Windows system could be developed.

Arabic Windows and Systems Integration

Systems integration is a necessary requirement in today's environment. Various heterogeneous
systems are viewed as building blocks which must be integrated together to form a larger system.
Such integrated environments are called OPEN SYSTEMS. The components are dissimilar -
manufactured by different suppliers and running different operating systems. Yet they are
connected in a network providing one working environment where information is transparently
exchanged and computing power is incrementally increased.

The concept of openness is appealing to users in the computer industry because it dissociates
them from monopolizing manufacturers. Given a specification, users can integrate several
operating systems on different hardware platforms supplied by different vendors in addition to a
variety of accessories.

Hijra calendar is a lunar calendar used by Moslems.

2 Microsoft already announced that it will ship a fully arabized version of Windows in addition to a line of
its software: Microsoft Word word processor, Microsoft Excel spreadsheet, Microsoft Access database, and
the Arabic Software Development Kit for Windows development tools (Visual Basic, C/C++).

29

Microsoft has put great effort in attracting software developers to join the Microsoft "family" by
releasing development tools and system documentation at affordable costs. This has motivated
developers to release Windows versions of their software packages and tools in addition to
creating new packages for Windows. These tools cover a wide range of applications from word-
processing, drafting, utilities, networking, etc.3

Windows' peculiar design, supported by its large base of software tools and packages, allows for
smooth integration with other systems. A variety of networking protocols and network interface
tools is available for Windows.

Arab computer professionals now have the chance to create integrated systems that comprise
bilingual GUI interfaces. The IBM-AT family of machines (and clones) running Windows can
serve as low cost bilingual workstations in addition to more powerful servers that are connected
on the same network. Windows with Arabic support is ideal as a bilingual interface tool to create
a bilingual open system architecture. The same could hold true for a Farsi Windows system.

One workstation can connect to more that one server at a time. The user can then process files
transparently on many servers (concurrent with other users, and possibly on different operating
systems). In an integrated environment, remote output devices are accessible in a transparent and
bilingual fashion. The underlying network takes the responsibility of delivering the request to its
destination which can be distributed on several nodes (points) on the network. Adding Windows
network oriented tools (electronic mail, electronic scheduler) in the desired language (Arabic,
Farsi, etc.) along with other bilingual desktop tools, provides integrated bilingual office
automation at its best for end users.

Anticipated Problems in an Integrated Bilingual Environment

The inadequacy of existing standards for bilingual character code sets has resulted in many diverse
code sets that have been adapted by several bilingual applications on various platforms. This
current diversity is a barrier to transparent information exchange in the bilingual integrated
environment,

Windows with Arabic support, has the ability to emulate any of the known Arabic character sets
adapted by known applications. Furthermore, a file conversion utility is provided that translates
files between several Arabic character codes.

Third party Arabic software houses have announced that they will develop software packages that
address the problem of multiple character sets in an integrated environment. These packages will
make use of the emulation feature in Windows.

Conclusion
3 Microsoft announced that it will release an Arabic development library for some Windows development
tools.

30

Arabic Windows is a fine example of a de facto standard Arabic GUI that follows strong
principles for bilingual design. The Farsi bilingual effort can learn from the development
experiences of Arabic bilingual systems. Adherence to the principles given above should guide
the design of Farsi bilingual systems. Practical and elegant implementation of those principles (as
done for Arabic Windows) should produce a working Farsi model upon which countless Farsi
applications can be developed.

References

1. Tayli, M., Al-Salamah, A., Building Bilingual Microcomputer Systems. Communications
of the ACM 33,5 (May 1990), 495-504.

2. Belfakih M., Arabization: Analysis, Recommendation and Implementation Plan. High
Commission for the Development of ArRiyadh (May 1991).

3. Myers, B. and Doner, C., Programmer's Introduction to Windows 3.1, Sybex Tech
Publication, First Edition 1992.

4, Arab Standards and Meteorology Organization, 8-bit coded Arabic/Latin character set for
information interchange, ASMO DS 708 Tech. Report, 1985.

3. Microsoft Corporation, Microsoft Windows 3.1 User's Guide, No. PC21669-0492, 1992.

6. Microsoft Corporation, Microsoft Windows 3.1 with Arabic Support, User's Guide
Supplement, No. 0592-PN31317, 1992.

7. Petzold, C., Windows version 3.1, Microsoft Systems Journal 6, 5 (Sept/Oct 1991) 17-26.

31

An Approach to UNIX Farsi System

Behzad Torabi
Iran System

December 14, 1992

Abstract

Although single-user DOS-based machines still are undisputed rulers of Iran’s computer
market and industry, those organizations in search of more powerful systems have started
taking UNIX seriously. However, work should have been done to add Farsi capabilities to
UNILX. Following a brief history, the author takes a look at efforts made in Tehran- based Iran
System Company to develop Farsi tools and applications for UNLX. As a part of UNIX Farsi
System, the development of a Farsi translation layer under which Farsi applications are
running is explained. The article also focuses on Iran System’s strategy in choosing UNIX as
the platform of choice.

t Iran Systems, P.O. Box 15875-3884, Tehran, Iran.
Tel: (021) 628-055 Fax: (021) 622-141

1 History

When early personal computers arrived in Iran, there was little Farsi computing around. On the
mainframe side, IBM with its family of 3270 Farsi terminals and Farsi chain-printers was the biggest
player in the market. The way that IBM addressed the problem of working in Farsi was quite simple.
Using a switch, data terminals could shift back and forth between Farsi and English text-entry modes.
This switch was also inverting the direction in which characters were entered, therefore making it
possible for users to enter Farsi texts (like Arabic, the direction of text in Farsi is from right to left).

On the printer side, the English chain should be replaced with a Farsi one and after that, it was
possible to make Farsi hard copies. However, the major disadvantage of such a solution was that of
machines’ nature. They had been originally designed to work in English and the data could never be
stored in Farsi. Another disadvantage was the lack of mixed-lingual text-entry capabilities. English is
the language of choice in technical and scientific communities and beside supporting the native
languages of users, a capable computer system should also offer support for bilingual text-entry.

With the arrival of first personal computers to the country and the lack of support from Western
computer firms, Iran’s computer community was faced with a challenge of great magnitude: making
personal computers work in Farsi.

The first personal computers which were Iranized were NCR DMV series. After that, IBM PCs
and compatible machines should have been modified to work in Farsi. On the printer side, Epson’s
FX-100 series were among first printers offering bilingual Farsi/Latin capabilities. Since there was
no organization to supervise and conduct the process of Iranizing computer systems, some private
companies had to take over. As the result, multiple standards for Farsi character sets emerged on
IBM machines.

On the software side, some poor quality Farsi editors were all that were available for Iranian users.
Not a single Farsi database management system, word processor or utility package was available and
every thing should be started from scratch.

Faced with limitations in accessing technical documents and materials on one side, and lack of
hard currency on the other, Iranian system developers and programmers had to go through the tough
way, finding their own path throughout the system and finding out about everything with a trial and
error method. Today, the situation is much different. A wide range of Farsi applications and tools are
available in the market. Iranized database management systems and desktop publishers, accounting
applications, Farsi DOS extenders, and almost every thing else that users may need is present.

DOS-based systems are around every where and, wide spread practice of software piracy have put
bundles of free packages and applications from every category at the hand of users!

2 UNIX

Up to 1988, so much work had been done for DOS-based PCs. The prices were down enough for most
government departments and private companies to purchase personal computers and peripherals, but
medium and large size companies and organizations were still faced with problems. From one side,
the amount of data in their offices was much more than what a DOS-based PC could handle and from
the other side, they needed to share data among users in various ways.

One solution was buying a mainframe, but comparing with PCs, mainframes were and still are too
expensive to be purchased and maintained. There remains two other choices, networking and
switching to UNIX.

We, at Iran System, were faced with this problem, too. We saw a large potential in market for
much stronger systems, but as a PC manufacturer, we had to stick with IBM compatibility. In the
summer of 1988, we introduced our 386-based computers. These machines were powerful enough to
handle tasks much stronger than a simple DOS session, so we decided to choose between DOS-based
networks and UNIX. |

UNIX won for many reasons, among them the power, built-in networking, multitasking along with
multiuser capabilities, and expandability in much lower costs compared to DOS-based networks.

Modifying UNIX to work in Farsi was not an easy task at all. There were limitations, restricting
our access to all aspects that could be considered Hi-Tech, and in a market that was crying for more
and more computing power, we didn’t have much time to spend around.

3 Hardware Side

Although the problem of displaying Farsi characters on PC display units had been solved long ago, the
way of accessing and loading them under UNIX was very different. On the other hand, under UNIX
the system console (i.e. the PC’s display unit) may be used as 12 separate ANSI compatible terminals,
each of them having its own way of handling Farsi characters. The diversity of terminals that UNIX
could support was another problem. Choosing the simplest way, we decided to start with just two
main series, WYSE and DEC’s VT series.

Iran System’s Farsi character set is based on bimodal appearance of Farsi alphabet, so we did not
have to worry about processing each character before sending it to the terminal (the task is known as
contextual analysis).

Thanks to UNIX’s same view of all peripherals, handling Farsi on printers comes much the same
way of the terminals. Some of the special purpose devices were not capable of accepting Farsi
downloadable characters and therefore, minor hardware changes should have been done to build
Farsi codes into them.

Parallel to the team working on hardware side of problem, another team focused on
developing system and application programs. The most wanted tools for the new born Farsi UNIX
was bilingual English/Farsi text editor, database management system, word processor, and Farsi shell.
The latter was very important because UNIX is very odd looking at the first glance for DOS users and
we had to provide ease of use and user friendliness that came with DOS-based systems for our users
to make them feel at home.

With the goal of making UNIX friendly and acceptable for users familiar with DOS, we took our
software models from the DOS world. Our bilingual editor, BE, is an UNIX menu driven equivalent
of PE2 in DOS and our Farsi sHell, ABZAR, is very much like an extended version of PCSHELL.

We also chose the UNIX version of FoxBase as our Farsi database management system for its
widely acceptance in DOS world, the ability of creating similar environments for both DOS and UNIX
users, and application and data portability between two operating systems. This made the task of

34

putting UNIX and DOS machines on the same network easier by making same data transparent for
both worlds.

For our word processor, KELK, we had no model to imitate. Because of the challenges that an
UNIX word processor should meet, simply no other word processor was available to fulfill our
requirements. A DOS version of KELK was also developed to keep the idea of having a DOS
equivalent for all of our tools. A Farsi calendar and date completed our Farsi package.

To be an assist to the system developers writing applications under our Farsi UNIX environment,
an advanced screen editor (ISE) with professional editing features was developed along with a Farsi
programming language and database management system (ISPL) with built-in SQL and BASIC like
syntax. We also developed a programmers’ hexadecimal editor (MABNA).

When the job was finished and the Farsi UNIX came to the market, we were noticed that market’s
demand for distributed databases was much more than we thought. Rapid enhancements in country’s
telecommunications networks now make it possible to have reliable communication interchange
between two or more computers in different locations of the country, and 9600 data compression
modems are working well enough.

This made us to go for a real networking database and we figured out that Informix is a proper
choice. Our Farsi solution for Informix was adding a Farsi phase to its compiler to alter the generated
code. This brought comfort to Farsi application developers since they no longer were caring about
how the program will work in Farsi mode.

4 A Farsi Layer for UNIX:

It is necessary to have a translation layer for application programs running under a Farsi multiuser
and multitasking operating system. Of course, such a layer increases the system load since for every
active task, at least one translation task should be activate and this puts an extra burden on the system.
However, there is no other alternative when one is bringing an English application to an Eastern
language like Farsi or Arabic (another choice which is coding Farsi applications from scratch do not
seem much appealing!)

This translation layer, like many other software solutions, can be placed in system’s terminal.
Although using a Farsi data terminal removes the translation layer’s load from central computer, from
our point of view it has the following disadvantages:

@ What should be done to the current installation base of terminals? Most of our customers who
were using Iran System UNIX did not have the financial conditions to discard all of their terminals
and purchase new ones.

@ For cost efficiency purposes, many customers are using their outdated XTs and ATs with terminal
emulator programs. The Farsi terminal was not an answer to this kind of users at all.

® The system’s console does not take advantages of the Farsi terminal. So it should either remain

untouched or a Farsi translation layer should be written to just handle jobs that had been activated
from console.

35

Having above mentioned factors in mind we turned to Farsi translation layer alternative. Before
going deep into the design, it’s a good idea to discuss Farsi DOS extenders first. It would help us in
getting a better view of what a Farsi translation layer looks like.

A DOS translation layer is a TSR (Terminate and Stay Resident program) that filters the keyboard
input and screen output of desired program or whole operating environment and makes certain
changes in them.

Input filter replaces the address of system’s keyboard interrupt, so when user activates the
language-switch key, each English character will be mapped into its Farsi equivalent. When a
program tries to access the display unit, the cursor movement will be reversed and Farsi characters
will be interpreted and displayed by reading and writing the PC’s screen memory. Since DOS is a
single-task operating system, a TSR program can easily take over all system resources. As long as
TSR translation layer is in charge, DOS has no control over what happens to the system.

On UNIX side, the main concept remains the same. Any program that uses the translation layer
should be surrounded between I/O filters. But UNIX is a multiuser and multitasking environment
with full control over computer’s hardware. The main differences between DOS and UNIX
translation layer programs are:

e Because ordinary users never have a permission to access computer hardware under UNIX, direct
hardware accesses through user-level programs is not possible.

@ Almost all UNIX programs run on text-based terminals with no screen memory. So there is no
ready-to-read screen output available.

@ TSR concept simply does not exist under UNIX. Because the environment is a multitasking one, a
program is either running or not running and the concept of Terminate and Stay Resident simply has
no meaning. Of course, a program can run either in foreground or in background and a running
program can be in sleep mode until something wakes it up.

Having these facts in hand, something for UNIX itself can be worked out. At first, because there. is
no access to system’s hardware, the available system resources (i.e. standard input, standard output
and standard error) should be used. In our Farsi layer, two programs are responsible for taking care
of the job, one filters input and the other filters output of the program that we want to make it work in
Farsi. These two programs keep track of their status by using IPC (interprocess communication)
methods prepared by UNIX. In this way, they both will always know the exact situation of main
program.

In main program’s point of view, keyboard input and screen output come and go just the same way
they did before. Here are some reasons that why this type of translation program suits best for our
needs:

® Because all the translation job is handled by translation program, there is no need for making
changes in existing terminal emulators and PCs can be used instead of terminals as before.

36

e All types of Farsi terminals are supported and there is no need to add new hardware for using
translation layer program.

® Because of bimodal nature of our Farsi code set, data remain transparent between DOS and UNIX
application software programs. In addition, there is no need to printer filtering programs since the
same data will be sent to the printer.

® The price that user pays to get advantage of Farsi layer with his or her library of English software
products, compared to other solutions, is very low and this persuades users which are in doubt
regarding choosing a proper platform, to make up their minds and switch from DOS to UNIX. Users
that are currently using UNIX will be sure that their investments are safe.

5 Conclusion

The UNIX Farsi System is made of following parts:

e Hardware that Farsi characters are directly built into it

@ Drivers for hardware devices which are capable of downloading Farsi code set
@ Original Farsi programs (shell, editor, word processor,...)

@ Tools to be used by system developer

@ Farsi translation layer

37

Farsi Computing: An Overview

Amin Mohadjer
BRAIN Computer Systems GroupT

January 17, 1993

Abstract

In Iran, a wide range of computing tools, originally designed to process Latin-based scripts,
have been in use for decades despite-the linguistic barriers. The process of localizing Latin-
based systems and applications, in order to make computing and the use of computers easier
for Farsi users is well underway through foreign vendors and domestic developers. This article
illustrates the problems around regarding computing in Farsi. Some of the techniques
long used by developers of Farsi systems are brought in focus. Since, DOS is still the
environment of choice for the majority of Iranian software developers, most of topics discussed
here are exclusive to DOS. Some of the problems such as having multiple standards for Farsi
information interchange are also discussed.

+ BRAIN Computer Systems Group, P.O. Box 14455-161, Tehran, Iran.
Tel: (021) 980-102 Fax: (021) 980-102

1 Introduction

During the past several years, Iran’s data processing community has suffered from the lack of a
well-defined standard for Farsi character set. Despite the frustrating debate on setting a unique
standard, there are still doubts that whether we will ever agree on a standard character set for our
langnage “Farsi” in a near future.

It was just ten years ago, when PC computing found its way through country’s data processing
environments. Before that, the computing was mainly done on mainframes, most of them IBM 370
and compatible series. IBM mainframes were based on EBCDIC character set.

Since 7-bit EBCDIC does not provide enough space for having both English and Farsi characters
simultaneously, users of such systems were forced to use either English or Farsi characters at one time
by switching back and forth between these two sets. In practice, this caused some problems; it was not
possible to have bilingual texts, and texts in each of languages should be printed on separate printers.

Then came ASCII and soon became the standard of choice for PCs. The 8-bit ASCII was capable
of having 256 characters defined, enough to contain both English and Farsi characters. However, to
have Farsi characters defined, the European and mathematical characters in the second half of the
code set (codes 128 to 255) should be dismissed.

Due to the hardware limitation of then, it was not possible to download fonts for Farsi characters
into video controllers. In order to make a PC work in Farsi, the characters should be built into
EPROM s using EPROM programmer devices. Since not everybody had an EPROM programmer or
the necessary technical know-how, only a few companies made their own character sets available,
perhaps two or three.)

With the introduction of downloadable printers and graphics boards, many software developers
found it easier to design their own character sets and this eventually led to the numerous character
sets available today.

Different motives could be seen for the companies to deliver their own character sets. One is a
matter of taste. Different character shapes, which will be discussed shortly, were supposed to be not
the same from the point of view of readability and visual effects.

Also, since our national standard organization was out of the game, software developers were
thinking that if the program they were producing dominated the market, they would be recognized as
the first companies who set the standard through the vast acceptance of their character sets.

However, till this moment, no organization has come up with a widely acceptable Farsi standard.
The blame may go to software companies since they insist on their own character sets and are not
ready to give them up in favour of having a single one.

But, one should also be aware of the cause that made these companies go their own way and that is
of Farsi script. To be fair, we should say that the blame must at least be shared. At present, the
question that comes to mind is whether we should continue our efforts (rather fights!) to eventually
agree on a standard or we can find an easy, acceptable and inexpensive way of supporting all available
character sets so it would no longer matters for users which set they are using and at the same time
these numerous sets can live peacefully together.

Of course, there are technical problems and some other major obstacles that should be addressed.
And ultimately, will the result be acceptable for the developers and end users?

39

2 Character Sets

As it was mentioned before, one of the factors that has greatly contributed to the emergence of
multiple Farsi character sets is Farsi script, itself.

In Farsi, very much like Arabic, the shapes of letters depend on their position within a word, and
their adjacent letters. Some of Farsi code sets provide distinct shapes for upper-case and lower-case
letters. That is for a given letter such as & two distinct shapes are considered, one for = (lower case)
and another for o (upper case). Therefore, in this class of code sets each upper case character gets its
own code space in the table.

On the other hand, there is another class of code sets which do not allot code spaces to upper case
letters but introduce a “tail” character, which concatenates to the lower case characters to form the
upper case letters (figure 1). To name a few characters, W&o and _pare generated this way.

o= .4 O

Figure 1. A “tail” character concatenates to the lower case to form upper case

Putting aside the difficulties of handling mentioned two-form characters, working with four-form
characters is another problem. Depending on the type of Farsi standard in place, a four-form
character such as g (its different forms are ¢ , &, @ , and 2) can either be expressed using four
different character codes or we can use just two codes for & and # and add a tail _ when appropriate.

There is another group with quite different shapes which are also making troubles. Characters
suchas §, e, and J can not be expressed by appending a tail to their lower case formats, so we must
consider two separate codes for their upper- and lower case formats.

Two letters need further briefing. (g and o are the last two letters of Farsi alphabet. Although, o is
a four-form character (o, 4 , » ,and g), a great number of character sets have just two codes
devoted to represent all four forms. s is used in place of both & and 4 while &is used for the other
two. The upper case (gets two distinct shapes in modern Farsi scripts; (s is used when the character
comes stand-alone and is used when it is to be concatenated to the previous character. Some
character sets consider just one § for both these purposes. There are also problems regarding
handling ¥, (, % ,and @ characters which are not discussed here due to space limits.

3 Monitor and Printer Support

As we mentioned earlier the first printers and graphics boards difl not support font downloading and
were loading their fonts from ROM chips. In order to add Farsi capabilities to their systems, users had
to have their font generator ROMs replaced by EPROMs in which Latin characters residing in the
second half of the code set had been replaced by Farsi characters.

With the introduction of EGA and VGA cards on IBM PCs, Mackintosh computers which
generally work in graphics mode, and downloadable printers, creating new character sets and working
with them became a relatively easy task. The above mentioned reason and the fact that software can
be copied easily and freely in Iran, it became possible for almost every PC user to own a downloader.

40

Despite the easy task of downloading fonts, there were still a few hardware that cause problems.
For instance, some STAR printers do not allow downloading characters for some ASCII codes in the
second half of the character set. Some other printers did not allow to even have just half of Farsi
characters defined at one time. These problems caused many companies, mainly those who were
selling these stuff, to design new character sets that would work without problems on their products.

Some unpredictable things also happened with the introduction of VGA boards. A character in
VGA is 8 pixel wide but it is shown in a 9 pixel wide block. In other words one blank pixel would
always be left between two adjacent characters. This caused a very unimpressive visual effect.

On the other hand the tabulation characters which lie in the ASCII range 176 to 223 were showing
a very interesting property. That is the CRT controller duplicates the 8th pixel column to 9th column.
In this way you could make characters like = and ={bind closely to each other. This feature raised this
idea to use mentioned area of ASCII character sets for concatenating Farsi characters. In all previous
character sets this area was left untouched since they were needed in many applications. But by the
time VGA was introduced some people designed new character sets by sacrificing the tabulation
characters for keeping the consistency between Farsi characters on screens.

Another feature built in VGA boards permits having 512 different characters displayed at one
time. This is possible by omitting the intensity attribute. This feature brought the idea to some people
to make use of it for solving all the existing problems. But in practice new problems were emerged.
Storing a 9 bit character code was both a cumbersome task and also there was a question of
portability. Printing characters of such a code set, if not impossible, could slow down the activity for a
considerable amount of time.

It is clear that different hardware configurations have had a considerable impact on the evolution
of so many new character sets.

4 Editing

In a standard Farsi typewriter, letters are typed individually and there is no smart process to
determine the right shape of the letter according to context. It is up to typist to use shift or other
control key to type the proper shapes. In computers, in contrast, one can write line editing programs.
This provides the ability to make an analysis on the incoming keystroke and the string entered before
to figure out the appropriate form of character, if necessary.

So far, several algorithms have been devised to do such analysis and conversion. Some of these
algorithms rely on just the previous entered key. Some others look at the character before the cursor
in the line buffer. In the latter solution if you move the cursor along the line you can be sure that the
correct shape for any newly typed character would be determined according to the character
preceding the cursor.

Another conversion that occurs when you enter a key is done on the character before the cursor.
Generally there are two basic modes of editing in use. In one, when keys are entered the lower case
shape will be considered as the default. If you type a concatenating character in front of it no change
will occur but if you type a blank the previous character will be converted to its upper case form. In
the other method, the upper case mode is selected when you enter the character. Then, if you enter a
concatenating character following it, the program automatically converts it to the appropriate form.

4

A few problems occur with the automatic conversion of codes, no matter which method you
choose. Suppose you are to enter the word; 992 &8, With either of the methods discussed earlier
the word will be entered as 3 gl which is not quite what we intended to have. A solution to such
problems may be a virtual space between i and Sgo by using an unused key to enter it.

Another problem is that in Farsi script we use ¥ instead of UYand it is expected that the editor
program replace the two characters U with the one character ¥ .

Of course more can be said on the different approaches the software developers have taken in
their editor programs, and the keyboard layout as one of the most affecting factor needs further
considerations; but, here we just took a look at some aspects of editing modes in order to show their
impact on the selection of a character set.

As you’ve seen the dynamic analysis and conversion of characters in Farsi editors make them
distinguishable from their Latin languages counterparts (besides you have to handle letters from right
to left while digits are entered using the same left to right scheme). Because of that, many developers
decided to sacrifice some character codes in favor of having simpler and fewer code. Some letters that
were omitted under this condition are the stand-alone (§; aswellas &, g, ¥, and 2.

In the same way processing of with-tail characters is relatively simpler than those characters which
have distinct upper case and lower case codes, hence some favours the with-tail characters (no need
to mention that when printed, with-tail characters have a more impressing appearance).

Some developers have tried to Iranize original packages, especially database management systems
to give Farsi users full advantage of the complexity and power built into these products with a
minimum of investment. Since such companies did not have access to source programs, they had to
write interrupt service routines in form of resident programs or device drivers.

These interrupt routines which replace the keyboard and sometimes display interrupt service
routines allow to make necessary analyses and conversions on the input key. Almost all such systems
could only rely on the previous key typed and there was no way to analyze the user’s input buffer
according to cursor’s position. This caused that those companies present character sets which need
little analyses and simple conversions.

Now, with the ever increasing demand for original, complete, and reliable packages and services
the original companies offer on their products, we see less such illegal modifications and reselling of
packages. On the other hand since some of these original companies now have representatives in Iran,
it has become possible for them to work on the source programs and hence they may present much
cleaner customized packages. I hope that this will help to make companies agree on a standard set. In
this way those who have presented character sets to get easy and unlawful profits from packages, no
longer will be able to dominate the market.

5 Storing and Sorting Farsi Data

In this section, we will discuss the problem of storing and sorting Farsi texts and data and its impact on
choosing a character set.

Two cases should be studied under this category. The first is when you write the sorting routines
by yourself or have a toolbox or a file system package to do the job for you but you can determine your
own comparison routine.

42

In this case there is no need to worry about how to store the data, since regardless of method you
can perform enough modifications on the two strings you want to be compared. These conversions
usually can not be performed prior to storing (though some do it), since some information may be lost
in this way. To name a few of such conversions that are useful to make comparison more reliable, we
may mention: removing blank spaces, stretch characters, and some punctuation characters, converting
multiform characters to just one character (this conversion must preserve the alphabetic order), and
inverting the string so that we may use the hardware comparison operation which usually performs
from left to right.

Sometimes this last conversion is performed during storing so that the time for each comparison
will be reduced and hence the time of occasional sorting that often takes lots of time.

The other case is when you use a package or toolbox that does not allow you to define a
comparison routine. In other words it uses the conventional string comparison operation which
translates to a single machine instructions.

Design of a character set for such system must be done carefully since extraneous characters and
even the order of multiform characters can cause serious problems. Unfortunately, it seems to be
almost impossible to design a perfect character set for this case so that it would eliminate every
problem.

6 A Solution !

By the way, although numerous factors should be considered in designing a Farsi character set, I tried
to enlist some of the most important ones. Now we go back to the question that whether we shall
continue our debate on setting one single standard or there are ways to have a few sets (each of them
being selected from a larger group of character sets) and have them work beside each other. The
remaining part of the article will consider the possibility of developing software to provide different
sets as options for users or even allow the exchange of information between existing software by
adding conversion routines to them.

I propose that old software be modified in their new version so that they provide possibilities for
the user to import or export files of different character sets (some companies have already tried to do
that, and it seems that it has proven to be practical). New software products should provide options
(e.g. in form of menus) for selecting the desired character set to be used in the environment of the
package. This may satisfy the taste of a large majority of users. The technical aspects of such system is
under investigation by the author and early studies reveal that this is quite possible.

7 Conclusion

The last word is that while we have not been able to come to an agreement on a standard character set
after so many years, why don’t we sit and select a few, that is three or four, sets as our standard, each
representing the useful aspects we have already discussed? Obviously the major problem in this
selection is that sets must be convertible to each other and this conversion must be done in an
inexpensive and reliable way. I hope that future efforts for setting the standard will eventually lead to a
happy ending that put a firm basis for future developments of Farsi software programs.

43

Catalog of Publications on
Farsi and Arabic Computing

Compiled by: Amin Mohadjer

The following bibliography contains the list of published papers, articles, and conference proceedings
which in one way or another are related to the topic of Farsi/Arabic Computing. Since the pre-
paration of a more complete version of this list was not possible, a preliminary version is introduced
here. This list is sorted according to the names of authors and will be regularly revised and updated to
include new entries.

In case, you have authored a paper or article in above mentioned area and your name is not included
here, please be kind enough to provide us with a copy of your paper to be appended to this list (the
address is given below). Copies of some of the articles listed here are available upon paying a nominal
fee (to cover postage expenses). Send your requests to the following address:

Amin Mohadjer
P.O. Box 14455-161
Tehran, Iran.

1. Appropriate Technology Ltd. APTEC Arabic Utilities Programming Manual v2. London, 1984.

2. Arab Standards and Metrology Organization. 8-bit Coded Arabic/Latin Character Set for
Information Interchange. ASMO DS 708 Tech. Rep., 1985.

3. Arab Standards and Metrology Organization. Data Processing 7-bit Coded Arabic Character Set for
Information Interchange. ASMO 449 Tech. Rep., Amman Jordan, 1982.

4. ASCII Encoding of the Persian Language. NOOR Vol. 2, Issue 11, EleTek Systems, 1992.

5. Becker, J. D. Arabic Word Processing. Communications of the ACM, Vol. 30, No. 7,
July 1987, pp. 600-610.

6. Dadashzadeh, M., Dadfar, M. B., and Sanati, M. Writing A Farsi Printer Driver for MS-DOS
(Abstract). In Proc. of First International Computer Conf. in Science, Technology, and Medicine,
Isfahan, Iran, Dec. 26-28, 1991.

7. Hosseini, Anoosh. Development of A Persian Graphical User Interface (Abstract). In Proc. of First
Int’l Computer Conf. in Science, Technology, and Medicine, Isfahan, Iran, Dec. 26-28, 1991.

8. Hyder, S. S. A System for Generating Urdu/Farsi/Arabic Script. Information Processing 71 (Proc.
of IFIP Congress), North-Holland, Amsterdam, 1972.

9. International Business Machines, Inc. Personal Computer National Supplement Arabic.
No. 8223445. 1985.

10. International Organization for Standardization. Information Processing - 8-bit Single-byte Coded
Graphic Character Sets - Part 6: Latin/Arabic Alphabet. 1SO/TC 97, ISO 8859-6 0, Tech. Rep., 1987.

11. International Organization for Standardization. Information Processing - Arabic 7-bit Coded
Character Set for Information Interchange. 1ISO/TC 97, I1SO 9036 Tech. Rep. 1987.

12. Knuth, Donald E. and MacKay, Pierre. Mixing Right-to-Left Texts with Left-to-Right Texts.
TUGboat, Vol. 8 (1987), No. 1, pp. 14-17.

13. Kostopoulos, George K. Design of A Universal Text Processing System and Its Handling of Farsi
(Abstract). In Proc. of First Int’l Computer Conf. in Science, Technology, and Medicine,
Isfahan, Iran, Dec. 26-28, 1991.

14. MacKay, P. Typesetting Problem Scripts. Byte, Vol. 11, No. 2 (Feb. 1986), 201-218.

15. Manzer, M., and Mahmoud, N. N. A Special Purpose Computer for Arabic Text Processing. In
Proceedings of Tenth National Computer Conference (Jeddah, Saudi Arabia, Feb. 28-March 2).
1988, pp. 679-688.

16. Microsoft MS-DOS User’s Guide Arabic Supplement. Microsoft, 1988.

17. Modiri, Nasser. How to Connect Iran to a Wide Area Network. NOOR Vol. 2, Issue 12,
EleTek Systems, 1992, pp. 521-527.

18. Mohammad-Zadeh, M. Persian Operating System and Editor. M.S. Thesis, Sharif University of
Technology, Tehran, Iran, 1986.

19. Mohsen Zadeh, Mohammad and Kazemi, Saied. A Persian Codeset for Information Interchange.
Parsis, Inc. April 10, 1992

20. 01 Systems ITHA User’s Guide and Advanced Programming Reference Rel. 3.0. Bahrain, 1988.

21. Parhami, Behrooz. Decomposition of Characters into Line Segments. Proc. of the Seminar on
Educational Problems and Teaching Methods for a First Course of Computer Science, Tehran,
Oct. 1975, pp. 41-65.

22. Parhami, Behrooz. Impact of the Farsi Language on Computing in Iran. Mideast Computer,
Vol. 1, No. 1, pp. 6-7, Sep. 18, 1978.

23, Parhami, Behrooz. Language-Dependent Considerations for Computer Applications in Farsi and
Arabic Speaking Countries. System Approach for Development (Proc. of IFAC Conf.),
North-Holland, Amsterdam, 1981, pp. 507- 513.

24. Parhami, Behrooz. On the Use of Farsi and Arabic Languages in Computer- Based Information
Systems. Proc. of the Symp. on Linguistic Implications of Computer-Based Information Systems,
New Delhi, India, Nov. 1978.

25. Parhami, Behrooz. Optically Weighted Dot-Matrix Farsi and Arabic Numerals. Information
Technology 78 (Proc. of the Third Jerusalem Conference.), North-Holland, Amsterdam, Aug. 1978,
pp. 207-210.

45

26. Parhami, Behrooz. Standard Farsi Information Interchange Code and Keyboard Layout: A Unified
Proposal. Journal of the Institution of Electrical and Telecommunications Engineers, Vol. 30, No. 6
pp. 179-183, 1984.

27. Parhami, Behrooz and Mavaddat, F. Computers and the Farsi Language: A Survey of Problem
Areas. Information Processing 77 (Proc. of IFIP Congress), North-Holland, Amsterdam,
1977, pp. 673-676.

28. Parhami, Behrooz and Taraghi, M. Automatic Recognition of Printed Farsi Texts (Summary).
Proc. of the Conf. on Pattern Recognition, Oxford, England, Jan. 1980.

29. Parhami, Behrooz and Taraghi, M. Automatic Recognition of Printed Farsi Texts. Pattern
Recognition, Vol. 14, Nos. 1-6, pp. 395-403, 1981.

30. Saad, H., Adnan, N., and Mohammad S. Recent Experience in the Development of a Standard

Arabic Information Processing Glossary. In Proceedings of Eleventh National Computer Conference
(Dharan, Saudi Arabia, Mar. 4-7). 1989, pp. 373-381.

31. Sanati, Mohammad, Dadashzadeh, M., and Dadfar, M. Irgnian Standard Code for Information
Interchange (ISCII). In Computer Standards & Interfaces, Dec. 1987.

32. Saudi Soft. AL MUSSAED AL ARABI. Jeddah, Saudi Arabia, 1986.
33. Smith, Ben. Around the World in Text Displays. Byte, Vol. 15, No. 5, May 1990, pp. 262-268.

34. Social.Culture.Iranian NewsGroup. Iran’s Connectivity to World-Wide Networks. NOOR Vol. 2,
Issue 7, EleTek Systems, 1992, pp. 370-372.

35. El-sheikh, T. S., and Guindi, R. M. Computer Recognition of Arabic Cursive Scripts. Pattern
Recognition, Vol. 21, No. 4, pp. 293-302, 1988.

36. Tayli, Murat. Integrated Arabic System. In Proceedings of the First KSU Symp. on Computer
Arabization (Riyadh, Saudi Arabia, Apr. 6-9). 1987, pp. 135-143.

37. Tayli, Murat. Integrated Arabic System Technical Information and Programming Manual. College
of Computer & Inf. Sci., King Saud University, Saudi Arabia, 1988.

38. Tayli, Murat and Al-Salamah, Abdullah I. Building Bilingual Microcomputer Systems.
Communications of the ACM, Vol. 33, No. 5, May 1990, pp. 495-504.

39. Tayli, Murat and Nafisah, M. Intelligent Arabic Workstation. In Proceedings of the Ninth National
Computer Conference (Riyadh, Saudi Arabia, Sept. 23-27). 1986, pp. 10-2-1 to 10-2-8.

46

(g8 83 3 5 gmalS 0 B

2\ LeasS ags

JGULJ).LJ,W?JLEJ,A a'SJlf“:a)Li‘;L‘,.:..,.»k;gj):O)fUJ A,id"g\!lbd.akixj.;«u{y
Ungw)bu)\a-‘))uyu-ﬂug‘j-:@ .c..-h.l..icj,s‘.u|4:$l>b\.,SJlu:~JUJ:)3,:.7‘1\.{ >)L{ Lud,:u;
&JQWRJMK OUT ol g pogn S (e (52§ Sasledn Oy o2 9 °-J‘~:-"’J'5,JLT"*!JE:):7‘JJ]
b)?‘ﬁleiiy\:;ﬁl((wjuolgj)jﬁl{»J.:wal.:‘x L‘;.;) Ly‘&:‘;ui’;}ha—)ﬁj’}-b; |. gan
50 O 5387 iy U gl g s < s LT sl JAS b ol lin Ol & e oS
' B ewloass S
2 o‘-’,,,t,c,..,.sﬁa'nrug;,‘.&,.,ytfquit?ﬁ{ Llazigs (3gp ipas 53 sldle LT:.{G:),..,#
Ca.uv}e’buw)bo.b» ,L:idl;.,ol,-,_sb..)ywqu)|a‘,..bul)du.bﬂm{;&rzwlr‘))?ﬁ
uud”;buwCJ’J"'QL“')“SD*'““UM‘C"f"’"lﬁw’éQYL“‘l'u"d"}:E“',’u .:,.a;us
PSTI P R s edis U e (sl hae g aa Olyze gojlad o abas (2
SIS PR DA QR PSR S a5 Jbb jeed lhas o 5 90, e
VEEO8 -V 2o B9 be
Ol

: 8 605 s * 5 (5 |‘J...’-| \
U’“")"{Lf—')}‘tﬁﬂzf .((&J}fq‘_fdjhb—\.ugf:buwr&» .d‘db’:h}:ﬂ.{)’\.ﬁ)M“o)J‘{ E)
,\—.\w‘\\‘v* ohé)O—V‘lel).)é&};}k)ﬂ‘()k_)))x;ﬂ (}J.LJU:!
e . ' » L sl (Y
P i VPV i)l VY L Ol S .«ngq-l.,fflﬁf .j;.;t{‘f}wg ulg\';
& 3 B v = . & . - 1} ¢
it ¢ \TVY JyM‘W)Vi °JL‘-“"‘*P| ~«u“'JL"“-’u"J 09 53 (S) -f’ - Q.j\A_\‘
i s el ;)

€6 60 omin ¢ VFVA OUT (V8 jlad catya] ()6 Jast 035 4 056 (0D .L;Jm‘wbl.,éz;
" , s D¢ 5 Sl e e ¢ a0 (8

Sl s S S NE s AL U (sl sl 2y e et
Y- PN 35 QO ot S VYO
: Y e ¢ 5alS S Ol gy als ol slp (e 0 o et (V)
e L) LYY G VP

AT 5 YV ;Ju‘j;r__,[_{ u:‘JU? .(();)_:?.L{Ja,»,su,gli‘:’»l{i),hébw» STV IRt 3o (v)
SLS = MRVY Bis
- . S ol : ; s (A)

. P TICTA LY 5 (& « S slas .Lf)éh.’-,dl.g)ql’)-g}ﬂddl-‘*‘» DA
OLT (YA 5lad 5l S o Samt) A s
P . .. Aol el 1S T NS 55l) elBi s (V)

518 () o MBI IS) 21kl o9 5 52 g 84D (o 11 U JIRRT o 6% O
PP B ry.\\-vrw‘ b VP8 g2 VA ¢ gal
X I T Lvaals Le,'[,'();; By . uuyd;:‘-’(")

ATUE g2 WSl ¢Sl SIS W plar Sl G 922 (20 B R S

BD-Vinas

. 0 = -)
sl (VE 8 jlad ¢ 3 geralS ufulf (o) SN (Sl sl oslo Jooly SO» e 02 6‘7‘"()
doaw o3 e A dsan VT
P . ; Tols U adayly 5o (Jdelp o ‘uw¢d.\>'.(\\’)

5 1: € (EDIAC ,l58lp 5 aimn SaS 4 (o) slisl O Ldals ~ .

SIS oAl A S VT8 3l (VY LS ¢ 5l
. 1100 Lol Ul Sloslizaly Lol dasma ¢ 2 (AT)

L 5 1€ (s, slasl L= sl Epson FX-100 - o J - == :
SrS FAS FEes AV s (AT 5l 5 (VY 3 lass

J)’_J'G’::'

47

i YV g) bl...i‘);)._.;,a‘.{JJL‘f JOlael g slgdslan s sl slaab o -J)““‘-‘Ur—’,'(\i)
-1

U L PR a)u.‘,:,#tfuz,l;.? ST 3l Jilas b)l SLLY coyeain 0350 (V0)
8%

TN 523,03 VY L2 5eplS S Lol (sl (b 0L Mty £ b0 . pnl3 6Ol (V1)
NY i

,JST‘t- zJL..‘-U:,,'-l{uZ,If RETRK djdfj,JlggL.;,ibg«,uhsm;)) Loy desun (Ol (V)
BNVl (VTN (6o

3la 5 VAV el 5yl 5 S 2ol .((rgjzi;.u‘gsl)gofw-u»_;uﬁfj&xuljj)) LA, o JWls (\A)
SN i (VY

UL, Ulo sy (50t 25 Sl 8300 STl Ul ,stn LS ST il Jleslys Bl (V1)
oo VA® VTV Syl amog g aalp Ol (S piil

ATV anl g ey (XY SJL‘:.-‘,:,,'.AK‘;),'? .«,:,,;»th..,sw,u;iﬁhs*!.:-» « 9 (=93 (Y)
AV VA Gets

‘V\ZJL‘..';‘JF)._.;A{JJ‘)? (Jgl a3 5 0ealS (595 o L) 93 9)8 3,580 Lo de ¢, (YY)
RETEIRY o T YOU P

‘VV3JL-$¢J3)=:AKU§JU? .((((;.)C........;)JJ):.‘..AL{‘_;)JJ;‘OLQ)),‘_{UU -’;JK» Lo, des (YY)
AR R EZPR L i VA Py

,’;JJL‘.._....«;};_,);_(_JLAJ,EVUUJ&; .((}J}Yli-w))jmﬁlfjlo:b|1:.>;i)u» .J...’-Icu.'vl:._-ﬂ(\"')
V¥V s ATV Sl)l (55 5epaS

R 2T AREHUTRL SR RCEVIES PR R 3 DGR PRSI N (S FAVIURE.C) SRR OES P WYE. 1 G £ 9

N E-YV fis gy Cmine ()6 SBAS amion (Y0)

ATV 0LST (55150000 £S5 Jlrmns (b 53 SUEMLI L3 (sl 3,1kl XD . jins ¢ 2mte (Y1)

BV BY i TV 51,0 (VY 8l (s T o 55mlS b) OLS sl ls55) L dass ¢ mins (YV)
CJ—.‘-;-_!-\)"V.\ o,le cj)-_-:dl.(U:'Jl)? ‘«(5"'Ju BL ul&)\-ud-\u 6‘,5)JLUL:..J Sy .—WLW(YA)
A=A Ao VT

) N LS (ol i (Ul 5 B 8 50015 55l 25 sl 13l 50 . daes ¢ 2mis (1)
LYY Y fomias VYV

AT s OV S L NY 6L (Ol s L lagli 1 bw (1)

T i VYV Sl)l VWY 8Ll (Ol St ()8 D9 o (- LbD) L ¢t 03l dlllas (YY)
08 aoin (VWA g el VYD b\.o.i&j,_.;ﬂlf,&_&;jgﬂrk .((p‘,:g.'..JO);‘fUU))(\"Y)

AOA gl 6ld|6;,,:.u’¢u,i.,tfoa;4p;x.:c,»>> Al G g e 125t 3 58 (TF)
o o APCVE i (WY 5l 52 (F8 5Lt ¢ j5pnealS” 515

AYVY 3150 (VG0 asmio (VAN 6, Ls VY Ju‘;ﬁw,@,ﬁlrk AOVE 93508)b i gn (YE)
o ATV 10 VY 5l 4T OG0 3L iy 9 Ol g5 oo)6 40 Oy L ol e a8 (110)
L8400

B QR RN P U Y E Wi R COW L i DY Slginn Lol 5o oMbl Jsbs JJLUL:..J&L.J&.A‘A:._.J(\"\)
=V s U8 g5,V et gl 515

IS0 AS” aaw s sl 1l Sy 5,050 (g pmamsian Loy o SLEdbI LS s jluleal Sl S (YY)

A= i N0 St 3,1 VA 6yl gealS” 15

s Ll (gl ($3Led S ST 55055 (5 mazsiad) L) 55 MBI JoLS 5 lulul Sladlas a8 (YA)

N Sk VN0 kg)l VU 8L ¢ 3puals” 5,155

595 9)b AL i ot L3 SN L (s 5o ST DoLS 5l Sladllas 257 (Y1)

APV S (W St) VAl 5l 5 1S

.((U:_-,fg;l.pl.(’.u):w)[ir.‘)\p‘_,.‘.ll...iiJLUauJKi)) PSRRI S P B AP R HEW uJl.»JLh.Ai:.:..f(i')

48

AN s VD g VA et it SIS

.\"\/\‘55‘\\ u:l.gv‘d}‘;)ucr:&;dbtww\{juq“ .((Ql‘&\b‘)o‘gj)) .u)wcjdw(i\)
A=W i \TTW Jl.\)“\ 3)\.;540.\.35‘)):;}’) .(((\)gdwl{)‘)’);”;“{» .Lﬂ)-‘\w‘)’sw(i")
oly3T (AT * 6Ls 3kl (5 Ll 53 ()b gm0 Ol miee g 2,13k e (£7)
T80

LIS i 595 (o B OLS (e 5 B9~ 535 N5 w0l ae i 5 3l g (££)
AW oL sloaepgs Pl Y ils 3ukl (g

TERALE PP RHES OG- (g FTS Y bl Jsls 18y L0l mee Slasiss 31l s g0 (£0)
AFA L :‘)f ‘(,)

s V0 3T (AN 5t ipeetlS NS o8 sl SWLD e VPR o [PPE {)
SYe

‘,'.,,.‘.A\fu:j"f ,«,;,_.‘.A{u,,xu,,u.,u,.;i;ulg.usmdu&uz.?;» e ¢ gl e (£V)
N i VPOA Gagp (A blad

VAD ylas ¢ 3 pmerlS” 3 Koig i oo (8 AS) iy Y - e leisd g 2 K (2A)
TN oo (VY g

,,;‘vonu‘,:,,,.L(uuf OGS e sWypS 9 S5tlSD sk e P hez S L (£Y)
0=V ot VY

t(djﬁ&ﬁ)wz}J)&JbJ)ﬁilbUﬁé .((L;.a)Us:—J,.i‘flJbJU.f', Lbo)._-jw)) .E_J.ﬂc‘_;;,h(b')
YN AT E o ATV i)

49

Appendix A

.ﬂmomopwzuqovwomammﬁaonﬁwmmHMﬂmwﬂa.%mx
3ITUS 3noylrTM padiky oi1e sisqunN 2dA3 JUSHTTTS3UT JO ST
pIeogiay 3JOSOIDTW °SIYIOM FJOSOIDTW Se yodns suex60xd

uotjeotrTdde Tsied S,3JOSOIDTW YITM pasn ST InokeTl STUL

anokeT paeoghay Tsaed JFJOSOIDTIW

\ A |

1330 3TY Ieg eoeds 3TV _ TI3D

] p] ¢ v

h 31TUS § HA m m. M | n...\L~ mu E&) _ 33TUS
m R L _9 M. P Eﬂ - T, %)

A s b L4 sde)

N \

mn 2 |2 Hu 2 (¢ 2 12 |0 [0 [@ [[0 | =
_ \ ‘ 3 ’ Ly ’ ’ J
sordsiordg - - ¥ (<) Q Q * ‘) O L)

-uot3ezTuebIO pIiepuels TRUOTIBU uetueII Aq

anokeT STU3 UT 9peuw 39 OF sobueyo oTqrssod 3noge piesy

oxe szoumI ‘IoAasMOoH °‘3nokel STyl bursn osTe ST wo3lsAs ueal
« Aepol 3nokel paeogkas] pesn AT9pTM 3souw 9yU3 sT 3nokel STUL

qnokeT pIeogAsd 006Z PIEPURIS

TI3D ﬁw Y 1eqg o@oeds HHWPHG TI3D

§

B

33TUS

sded

3T
g

)

. *9SnN UoUMIOD ® JO 30U ST 3InoAe
mﬂsa. A9y 37TUS 3Inoyatm padiky butaq mgm.mHQQEs%
9dX3 3USHTTTE3UT JO ST PIAROgASY zeS ysueley

3InokeT parogiey zes ysueley

TI3D 3TV
| 1eg ooedsg 1TV

ﬂ.‘
3s)

< g

‘posn oxe sko3 s3jeaedss Inog 2 se yons si9jdeIeyd WIOF-INOT
putdXky 10J DI103F°I9Y3 pue JUSHTTTSIUT 3JOU ST pxeogley

TARY Uyspeda A9y 3IITUS putsn poadXk3 o1 sIdqUNU Se TTSM S®
sio3397 oseo xaddn TIVY c193TamadAy Tsied paepueis e JO
Jey3a o3 BuTwIOzUOO ST PAROJASY STU3 JO 3nokeT SUL

JnokeT paeogiay TARM UsSped

133D ITY H 1eg soeds M 3TY

Appendix B

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

D> L L D e §f < -

-

» Ly — 5 1

¢C L @t oLl

L.

4 e

y o

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

v v b

h‘kc\kr\ LGS LS oo o

Graphical Characters

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Graphical Characters

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

ctla tueuchGhWGrLe o lrTecw PTe &

e L.

o

p 4

L6 9

Iran System Farsi Character Set

Original graphical characters are remained preserved in this character set but no code has been
It is believed that Iran System character set is the most widely-used
character -set today. All possible four cases of a Farsi letter has been built into this codeset.

allotted to Rials symbol.

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

-

_) N\ ©

(s

~

T

v L, U ALy .L

L.

4 e

"

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

"Nl

v

(Vs

k-\-k\ e b oo

Graphical Characters

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Graphical Characters

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Cc Leltlas tueuchhieettbwPrTeebw P T v«

LL9 e b 4o

SinaSoft Farsi Character Set

In this codeset, those upper—case Farsi letters with a "tail" at the end are being represented by a
combination of two characters (e.g. character " 2" is displayed when character " " (code 160) and

character " 2" (code 170) are joined together.

SinaSoft character set has preserved graphical

characters residing in the second half of the code but has no code allotted to Rials symbol.

128 . 160 oy 192 224 b
129 \ 161 ¢ 193 225 b
130 Y 162 > 194 226 ¢
131 r 163 5 195 227 -
132 £ 164 3 196 228 dne
133 3 165 3 197 229 -
134 5 166 3 198 230 ¢
135 v 167 3 199 231 =
136 A 168 o 200 232 .
137 q 169 - 201 233 ¥
138 x 170 - 202 234 o
139 ¢ 171 4 203 235 3
140 R 172 o 204 236 é
141 . 173 — 205 237 3
142 s 174) 206 g 238 <
143 4 175 5 207 2 239 11
144 T 176 208 g 240 S
145 | 177 209 5 241 £
146 L 178 y 210 = 242 J
147 o 179 H 211 Q 243 J
148 o 180 b 212 A 244 ¥
149 < 181 g 213 g 245 ¢
150 - 182 3 214 246 -
151 < 183 ~ 215 247 o
152 5 184 0 216 248 5
15, & 185 g 217 249 P
154 5 186 g 218 250
155 z 187 219 251 -
156 - 188 220 252 <
157 z 189 221 253 o
158 = 190 22 254 -
159 z 191 223 255

Rayaneh Saz Farsi Character Set
Developed by Rayameh Saz Co., this codeset is not of a general use. Graphical characters are
preserved and there is a symbol for representing Rials. With just one code difference, Rayaneh Saz
codeset is conforming to Iran System Character set. All possible four cases of a Farsi character
have been built into this codeset.

11

000 NUL 032 SP 064 - 096 -2
001 SOH 033 ! 065 @ 097 o
002 STX 034 " 066 s 098 b
003 ETX 035 = 067 < 099 b
004 EOT 036 Ju, 068 5 100 b
005 ENQ 037 % 069 o 101 i)
006 ACK 038 : 070 5 102 S
007 BEL 039 < 071 & 103 ¢
008 BS 040 (072 = 104 £
009 HT 041) 073 z 105 ¢
010 LF 042 x 074 - 106 3
o011 VT 043 + 075 z 107)
012 FF 044 ‘ 076 - 108 3
013 CR 045 - 077 z 109 é
014 SO , 046 . 078 - 110 s
015 SI 047 / 079 ¢ 111 5
016 DLE 048 . 080 5 112 £
017 DC1 049 \ 081 5 113 11
018 DC2 050 Y 082 5 114 J
019 DC3 051 v 083 5 115 J
020 DC4 052 £ 084 5 116 -
021 NAK 053 3 085 3 117 ¢
022 SYN 054 3 086 3 118 5
023 ETB 055 v 087 3 119 o
024 CAN 056 A 088 3 120 9
025 EM 057 q 089 3 121 9
026 SUB 058] 090 o 122 Y
027 ESC 059 | 091 o 123 o
028 FS 060 . 092 - 124 5
029 GS 061 L 093 ¥ 125 "
030 RS 062 3 094 — 126 NA
031 Us 063 5 095 v 127 DEL

Iranin Standard Code for Information Interchange (Standard 2900)

This is a 7-bit character set and is not in use today. Just two out of four possible cases that a
Farsi letter might take are included in this codeset. The first 32 codes are control characters. The
character set is complying with ISO extension techniques for 7-bit codesets. Using control
characters ST and SO, codeset G1 (this codeset) or codeset GO (origianl 7-bit ASCII codeset) can be
activated.

v

001
002
003

005

007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

NUL
SOH
STX

ETX
EOT
ENQ
ACK
BEL

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

049

050

051

052

053
054
055

-056

057
058
059
060
061
062
063

L > L A D e gt 2 -

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
0950
091
092
093
094
095

—\

—_— =P -

OO @ 60

v

Y o R S i U ST -

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

£

T A R I o S T T O c GWGhoe G

-

[

HSP
NSP

alis Farsi Character Set

Like ISCII, alis codeset is a 7-bit character set.
characters. Each Farsi letter has been defined just once and has occupied just one code space (one
out of four possible cases). Codes are also allotted to diacritical marks.

The first 32 codes are allotted to control

128 160 FSP 192 - 224 ¢ 128 NSP 160 192 224 z

129 @ 161 / 193 - 225 - 129 LSP 161 193 225 z

130 * 162 . 194] 226 & 130 162 194 226 C

131 R 163 ¢ 195 < 227 - 131 163 195 227 >

132 " 164 ! 196 g 228 ¢ 132 FSP 164 P 196 228 3

133 f 165 : 197 & 229 £ 133 165 T 197 229 5

134 ~ 166 ¢ 198 S5 230 & 134 BDG 166 | 198 230 3

135 & 167 ‘ 199 z 231 e 135 167 i 199 231 k

136 168 ‘ 200 - 232) 136 168 i 200 232 "

137 169 ? 201 z 233 S 137 Ju, 169 @ 201 233 =

138 170) 202 = 234 é 138 170 o 202 234 P

139 { 171 i 203 z 235 S 139 171 o 203 235)

140 } 172 ’ 204 - 236 S 140 172 & 204 236 b

1al. 173 g 205 ¢ 237 s 141 SLB 173 3 205 237 b

42« 174 - 206 > 238 X% 142 SFB 174 206 238 ¢

143 » 175 ! 207 5 239 £ 143 175 207 T 239 ¢

144 (176 . 208 3 240 J 144 176 208 ‘%1 340

145) 177 \ 209 J 241 Y 145 177 209 G 241 o

146 [178 Y 210 J 242 J 146 178 210 £ 240 P

147] 179 i 211 J 243 e 147 179 211 243 <

148 = 180 ¢ 212 o 244 - 148 180 212 244 £

149 # 181 o 213 — 245 o 149 181 213 245 J

150 % 182 ! 214) 246 - 150 & 182 i, 214 246 ¢

151) 183 y 215 4 247 P) 151 :‘g’a 183 o 215 247 o

152 < 184 A 216 e 248 0 152 d 184 Ec 216 248 9

153 = 185 q 217 —o 249 -2 153 2 185 @ 217 249 3

154 > 186 ’ 218 o2 250 * 154 T 186 5 218 250 .

155 \ 187 T 219 -2 251 ~+ 155 187 219 251 s

156 X 188 . 220 b 252 i 156 188 220 252 <

157 \ 189 | 221 b 253 - 157 189 221 253 o

158 + 190 L 222 b 254 e 158 190 222 254

159 - 191 - 223 i 255 3 159 191 223 255
Dadeh Kavi Farsi Character Set Microsoft Farsi Code
TEX-e-paarsi (Farsi version of TEX) developed by Dadeh Kavi of Iran is based on this character This character set is used by Microsoft for the purpose of storing and retrieving Farsi data but not
set. There are also minor changes in the first half of the codes. Graphical characters in the second for representation of Farsi information on the screen [see nmext pagesl. Only one out of four
half have been overwritten. Code 160 is allotted to Farsi space (FSP). Codes not allotted to Farsi g‘e’::’xl‘:n:a::s that a Farsi letter might take are incll.lded in this code: It is up to algorithms to
characters are reserved for future extensions. e proper shape of character on screen in accordance with neighbouring characters.

Codes 143 to 163 and 174 to 223 are remained unchanged.
vI VII

000 NUL 032 064 096

001 . 033 065 097

002 \ 034 066 098

003 Y 035 067 099

004 v 036 068 100

005 ¢ 037 069 101

006 5 038 070 102

007 3 039 071 103

008 v 040 072 104

009 A 041 073 105

010 q 042 074 106

011 # 043 075 107

012 % 044 076 108

013 0 045 077 109

014) 046 078 110

015 - 047 079 111

016 DLE 048 B 080 B 112 9
o o o

017 DC1 049 g 081 = 113 5

018 DC2 050 S 082 '§ 114 é

019 Juy 051 3 083 P 115 2

020 DC4 052 084 116

021 < 053 085 117

022 ‘ 054 086 118

023 ¢ 055 087 119

024 CAN 056 088 120

025 EM 057 089 121

026 SUB 058 090 122

027 ESC 059 091 123

028 g 060 092 124

029 GS 061 093 125

030 RS 062 094 126

031 Us 063 095 127

Microsoft Farsi Font

This character set is a version of Microsoft Arabic "Naskh" font. This codeset is used for the sole
purpose of displaying information on the screen. This is the only character set that has placed
Farsi character both in the first and second half of code table. Graphical character are preserved,
although some of control characters (codes 0 to 32) are overwritten.

VIII

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

-

_(- ==

LG oL s L

J I N R U 8

S S TR T Y o B g

%

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

vT e P T e e 6% VS L

Graphical Characters

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Graphical Characters

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

c L~ L.(‘_(’\\l’\\(’\t’\‘.-(;- l.(.i'

L.

©

o lon

cLLS a4y

L. o I e

+

Microsoft Farsi Font (continued)

—
128 NUL 160 Sp 192 T 224 o
128 NUL 160 sp 192 | 224 o 5 SOf - - T : e r
130 STX 162 PCN 194 s 226 [131 ETX 163 ! 195 - 227 1
I X 1® : 1% < 22t ! 132 EOT 164 Ju, 1% o 228 {
132 EOT 164 Ju, 196 - 228 { 133 ENQ 165 % 197 o 229 }
Jas e BN 165 % 197 i 22 } 134 ACK 166 ; 198 & 230 «
L 164 ' 155 =t 230 : 135 BEL 167 , 199 z 231 »
136 BS 168 (20 d 282 : 137 HT 169) 201 c 233 L
137 HT 169) 201 c 233 - e o . - : 544
138 LF =0 x 2 d 234 139 VT 171 + 203 > 235 \
L Wk L2 * 2 . %5 E 140 FF 172 ‘ 204 5 236
140 FF 172 ‘ 204 5 236 4 R 7 _ 205 , 537
4 R 73 - 205) 257 142 SO 174 / 206 J 238
142 SO 174 / 206 ; 238 43 SI 175 / 207 5 239
43 SI 175 / 207 5 239 144 DLE 176 . 208 o 240 kil
LA L E 176 ' 208 v 240 - 45 DC1 177 \ 209 & 241 —
1451 1 DCL 177 y o~ o 2 - 146 DC2 178 Y 210 i 242 Z
M .. Bea 178 i Ll R e = 147 DC3 179 v 211 > 243 ~
M7 e 79 ¥ Al P 243 . 148 DC4 180 ¢ 212 v 244 —
4 a0 ¢ L » 244 - 149 NaK 181 5 213 b 245 Z
W NAK 181 8 2L & 45 - 150 SYN 182 . 214 ¢ 246 h
B &N 162 K = ¢ 244 - 151 ETB 183 v 215 ¢ 247 &
WL BB 183 v 215 ¢ = - 152 CAN 184 A 216 o 248 !
152 AN 184 A o < 248 153 EM 185 4 217 d 249 G
L53] s L < 4 2L o 24 154 SUB 186 : 218 < 250 i
154 usUB 186 1 218 < 250 155 ESC 187 ¢ 219 o 251 P
155 ESC 187 ¢ 219 S 251 156 FS 188 < 220 J 282
5% = < 24 J %2 157 GS 189 s 221 ¢ 253
ISP G 14 - 22 f 253 158 RS 19 > 222 o 254
R 1 > 222 e 254 159 US 191 g 223 P 255 DEL
159 US 191 N 223 s 255 DEL ¢
G2 Table of 8-bit Farsi Standard Character Set)

G1 Table of 8-bit Farsi Standard Character Set The G2 table has four characters more than G1 [see previous pagel to offer support for 8-bit |
This code set is to replace 7-bit ISCII for Farsi information interchange in an 8-bit environment.

Just one out of four possible cases that a Farsi letter might take, are included in this code set since
the sole purpose of this standard will be for Farsi data storage and retrieval. This standard can be
seen as a protocol for Farsi data communication in a LAN or WAN and allows vendors to use the |
character set of their own for the representaion of Farsi data on the screens. X

IX

Arabic Standard character set, ISO 8859/6.

NOOR

A Technical Newsletter for Iranian Universities

NOOR is a monthly technical publication designed to promote and
assist the transfer of technical knowledge and scientific information to
Iranian Universities. NOOR was founded in 1991 by Dr. Nasser Modiri
for the sole purpose of communication of the latest trends and issues in
technology and science to the Iranian technical and scientific
community. NOOR in no way is associated with any religious, political
or profit-seeking venture nor does it endorse any such activities.

Some of the regular Iranian universities which receive NOOR at this
time are: Uo Isfahan, Uo Shiraz, Uo Orumiyeh, Uo Sharif, Uo
Ferdowsi, Uo Bu-Ali Sina, and Uo Science and Technology.

Contributors to NOOR present a wide variety of backgrounds, for
example, Computer Communications, Computers Graphics, Computer
Languages, Architectures and Compilers for High Performance
Systems, Software Testing and Automated Test Tools, Software
Production Processes, Quality Engineering, Testware Engineering,
System Theory and Feedback Analysis, Robot and Machine Vision, and
Medical Image Processing.

To receive a single Free copy of the NOOR, please write to:

Dr. Nasser Modiri

1107 Second Ave., Ste. 613
Redwood City, CA 94063, USA.
(415) 369-8967

Farsi Computing Review
(AA Ve Y) ol cpal 1wy

=
Y S &5
j w“’ w_) ulu}”
ol Syl ol 2ubials
olal Syl o]+ il
GL.‘« oyt f"""lj' :J_,.‘....‘jin
Lok e o

aabopy opl Alas das s b i .ol Glezs BRAIN Computer Systems Group , olal Sleysis] azil 4 Gy rl.:
ol pib 2S5l S p s

2l ol 1 ey Ghuamio
s+
o Blls i ols
pyer Bl YN S 93 d S palszel gy pbls o abl 5 GLLs rgpenil i
N EA G acs e, 5o s)8 olels
POPPAY :3is ik 5l
VPOY was Sholio’cSil VWY sgpamil Kol il §Let
b VEVOO-VAF s Gyt pll Suslaygisl gl el iy LS
S L il (e (S b wliny ol 928 S ls Shll sl

CALL FOR PAPERS AND CONTRIBUTIONS

Farsi Computing Review

A Quarterly Journal on Farsi Computing

Scope

A large number of countries, notably in the Middle East, have been trying to adopt the computer systems
initially designed for the English language and Roman characters to the needs of their native
tongues. Although, with the support of western countries, the Arabization of computer systems was
successfully achieved, such a support was not offered to Farsi users.

It took Farsi application developers years to come up with various techniques and algorithms to solve this
problem, and of course, it was led to incompatibility and lack of standards among software programs. Part
of this dilemma was due to lack of reliable and documented sources of information such as books,
magazines, journals, and papers.

Farsi Computing Review provides opportunity for researchers, developers and users of Farsi systems to
share findings, exchange ideas and experiences, and establish ties with each other.

It provides insiders of industry and academics with a reliable flow of information. The materials printed
in journal are relevant for many domains. Farsi Computing Review will be of interest to a broad spectrum of
professionals ranging from theoreticians to system and application developers, from researchers to authors
and end-users.

Topics

We encourage innovative submissions in any area concerned with Farsi Computing research
development and practice. The language of journal is in English. The areas of interest include but are not

.limited to the following

® Modification of software programs for working in Farsi
® Standadization and compatibility of Farsi packages
@ Farsi computing environments

@ Design of algorithms for Farsi applications

® Iranizing hardware platforms and peripherals

@ Farsi word processing and desktop publishing

® Farsi font generation (on screen and printout)

® Farsi character sequencing

@ Conversion utilities for Farsi applications

e Graphical-based Farsi packages

® Farsi software development toolkits

Additional Information
For more information or to receive future mailings and submission guidelines, please contact:

Amin Mohadjer
P.O. Box 14455-161

Tehran, Iran
Phone/Fax: +98 21 980102

Published by
BRAIN Computer Systems Group in co-operation with
Informatics Society of Iran

